ODE笔记-一阶ODE

这篇文章是 UncleBob 的 ODE (常微分方程) 中一阶 ODE 的基础核心理论部分笔记.

一阶ODE的基础核心理论

解的存在性 (Peano定理)

Euler折线法

以初值问题x˙=x;x(0)=1\dot{x}=x;\quad x(0)=1为例:
我们希望求得其解φ(t)\varphi(t)在某个t0>0t_0>0的取值, 我们去nn很大, 记δ:=t0/n\delta :=t_0/n.
方向场在(0,1)(0,1)放置的线段斜率为11, 在[0,δ][0,\delta]定义函数ϕn(t)=1+t\phi_n(t)=1+t, 在右端点处ϕn(δ)=1+δ\phi_n(\delta)=1+\delta.
方向场在(δ,1+δ)(\delta,1+\delta)放置的线段斜率为1+δ1+\delta, 在[δ,2δ][\delta,2\delta]定义函数ϕn(t)=(1+δ)+(1+δ)(tδ)\phi_n(t)=(1+\delta)+(1+\delta)(t-\delta), 在右端点处ϕn(2δ)=(1+δ)2\phi_n(2\delta)=(1+\delta)^2.
重复这个过程直到ϕn\phi_n在整个[0,t0][0,t_0]定义好. 我们有

ϕn(t0)=ϕn(nδ)=(1+δ)n=(1+t0n)n\phi_n(t_0)=\phi_n(n\delta)=(1+\delta)^n=(1+\frac{t_0}{n})^n

n+n\to +\infin, 有ϕn(t0)et0\phi_n(t_0)\to e^{t_0}. 实际上在任何紧区间ϕn(t)et\phi_n(t)\rightrightarrows e^t.
这种逼近解的方式称作Euler折线法.

Peano定理

URd+1U\subset \mathbb{R}^{d+1}开, f:URdf:U\to \mathbb{R}^d连续, (t0,x0)U(t_0,x_0)\in U, 则IVP{x˙=f(t,x)x(t0)=x0\begin{cases} \dot{x}=f(t,x)\\ x(t_0)=x_0 \end{cases}的解一定在t0t_0的一个小领域存在.

定理 (Arzelà-Ascoli)
{fn:n1}\{f_n:n\geq 1\}是紧区间II上一列在Rd\mathbb{R}^d中取值的向量值连续函数, 满足一致有界性质和等度连续性质, 则存在子列nkn_k\to\infin以及II上的连续函数ff, 使得fnkff_{n_k}\rightrightarrows f.


等度连续: ϵ>0\forall \epsilon>0, δ>0\exist \delta >0, s.t. xx<δ|x-x'|<\deltan\forall n, 有fn(x)fn(x)<ϵf_n(x)-f_n(x')|<\epsilon.

定理 (Peano)
f:URdf:U\to \mathbb{R}^d连续, 取ρ,η>0\rho,\eta >0使得Cρ,ηUC_{\rho,\eta}\subset U, 定义M:=max{f(t,x):(t,x)Cρ,η}M:=\max\{|f(t,x)|:(t,x)\in C_{\rho,\eta}\}, 那么IVP{x˙=f(t,x)x(t0)=x0\begin{cases} \dot{x}=f(t,x)\\ x(t_0)=x_0 \end{cases}在区间[t0ϵ,t0+ϵ][t_0-\epsilon,t_0+\epsilon]内至少有一个解, 这里ϵ=min{ρ,η/M}\epsilon=\min\{\rho,\eta/M\}.

证明 这里只给出大纲, 具体过程略过
第一步: 利用Euler折线法构造一列逼近解ϕn(t)\phi_n(t);
第二步: 利用Arzelà-Ascoli定理找到目标解ϕ\phi;
第三步: 证明ϕ\phi是IVP在区间[t0,t0+ϵ][t_0,t_0+\epsilon]上的解.

解的唯一性(Picard迭代)

解的积分形式

ϕ:IRd\phi:I\to \mathbb{R}^d连续, 其图像ΓϕU\Gamma_{\phi}\subset U, 则ϕ\phi为IVP{x˙=f(t,x)x(t0)=x0 \begin{cases} \dot{x}=f(t,x)\\ x(t_0)=x_0 \end{cases} 的解当且仅当其满足积分方程

ϕ(t)=x0+t0tf(τ,ϕ(τ))dτ\phi(t)=x_0+\int_{t_0}^tf(\tau,\phi(\tau))d\tau

压缩映射原理

度量空间

定义
XX非空, d:X×X[0,+)d:X\times X\to [0,+\infin)满足:

  1. 正定性: d(x,y)=0d(x,y)=0当且仅当x=yx=y;
  2. 对称性: d(x,y)=d(y,x)d(x,y)=d(y,x);
  3. 三角不等式: d(x,z)d(x,y)+d(y,z)d(x,z)\leq d(x,y)+d(y,z).

则称ddXX上的一个度量.

定义
{xn}X\{x_n\}\subset X为一个Cauchy列, 若d(xn,xm)0,n,md(x_n,x_m)\to 0,\quad n,m\to \infin.

定义
XX为一个完备度量空间, 若{xn}X\{x_n\}\subset X是一个Cauchy列, 则xxX,xnxx\exist x_x\in X,x_n\to x_x.

定义
(X,d),(Y,ρ)(X,d),(Y,\rho)为两个度量空间, T:XYT:X\rightarrow Y映射, 称TTx0Xx_0\in X连续, 若xnx0ρ(F(xn),F(x0))0x_n \rightarrow x_0 \Rightarrow \rho(F(x_n),F(x_0))\rightarrow 0.
T:XYT:X\rightarrow Y连续, 若TT在任何xXx\in X处连续.

定义
乘积度量:(X1,d1),(X2,d2)(X_1,d_1),(X_2,d_2)为两个度量空间, 令Y=X1×X2Y=X_1\times X_2, 可以定义d:Y×Y[0,+)d:Y\times Y\to [0,+\infin)d((x1,x2),(y1,y2))=max(d1(x1,y1),d2(x2,y2))d((x_1,x_2),(y_1,y_2))=\max (d_1(x_1,y_1),d_2(x_2,y_2)), 那么ddYY上的一个度量.

定义
开球 B(x0,r)={yX:d(x0,y)<r}B(x_0,r)=\{ y\in X:d(x_0,y)<r\}
闭球 B(x0,r)={yX:d(x0,y)r}\overline{B(x_0,r)}=\{ y\in X:d(x_0,y)\leq r\}

性质
(X,d)(X,d)是度量空间, (X×X,d^)(X\times X,\hat{d}), 则

d:(X×X,d^)(R,)d:(X\times X,\hat{d})\to (\mathbb{R},|\cdot|)

是连续的.

定义
VV是一个实线性空间, 上面定义一个函数:V[0,+)||\cdot||:V\to [0,+\infin), 满足:

  1. 正定性: v=0v=0||v||=0\Leftrightarrow v=\mathbf{0};
  2. 齐次性: λv=λv||\lambda v||=|\lambda|||v||;
  3. 三角不等式: u+vu+v||u+v||\leq ||u||+||v||.

则称||\cdot||VV上的一个范数, (V,)(V,||\cdot||)是一个赋范线性空间. (简写为n.l.s, 即normed linear space)
v||v||是向量vv的长度或范数.


(Rn,)(\mathbb{R}^n,|\cdot|), x=x12++xn2|x|=\sqrt{x_1^2+\cdots+x_n^2}

xp:=(i=1nxip)1p||x||_p :=(\sum_{i=1}^n |x_i|^p)^\frac{1}{p}

(V,)(V,||\cdot||)是n.l.s, 定义d:V×V[0,)d:V\times V\to [0,\infin)

d(v1,v2):=v1v2d(v_1,v_2):=||v_1-v_2||

性质: ddVV上的一个度量, 从而VVdd下成为一个度量空间.

定义
称一个完备n.l.s.为Banach空间.


I:[a,b]I:[a,b]是区间, V=C(I;Rn)V=C(I;\mathbb{R}^n),
定义:VR+||\cdot ||_{\infin}:V\to \mathbb{R}_+,

ff=suptIf(t)=maxtIf(t)f\mapsto ||f||_{\infin}=\sup_{t\in I}|f(t)|=\max_{t\in I}|f(t)|

性质: ||\cdot ||_{\infin}C(I;Rn)C(I;\mathbb{R}^n)上的一个范数, 称为无穷范数, 且(C(I;Rn),)(C(I;\mathbb{R}^n),||\cdot ||_{\infin})是Banach空间.

KRnK\subset \mathbb{R}^n是一个紧集, 定义W=C(I;K)VW=C(I;K)\subset V
性质: ||\cdot ||_{\infin}C(I;K)C(I;K)上的一个范数, 称为无穷范数, 且(C(I;K),)(C(I;K),||\cdot ||_{\infin})是Banach空间.


V=C(I,R)V=C(I,\mathbb{R}), I=[a,b]I=[a,b],

f1=abf(x)dx||f||_1=\int_a^b|f(x)|dx

1||\cdot||_1VV上的范数, (C(I;R),1)(C(I;\mathbb{R}),||\cdot||_1)不是Banach空间.


V=Mn(R)V=M_n(\mathbb{R}), AMn(R)A\in M_n(\mathbb{R}),

A2=i,j=1naij2||A||_2=\sqrt{\sum_{i,j=1}^na_{ij}^2}

Aop=supv=1Av||A||_{op}=\sup_{|v|=1}|Av|

op||\cdot||_{op}Mn(R)M_n(\mathbb{R})上的一个范数, 且cn>1\exist c_n>1, s.t.

cn1AopA2cnAopc_n^{-1}||A||_{op} \leq ||A||_{2} \leq c_n||A||_{op}

压缩映射

定义
(X,d),T:XX(X,d),T:X\to X映射, 设0<c<10<c<1, 称TT是一个cc-压缩映射, 若d(T(x),T(y))cd(x,y)d(T(x),T(y))\leq c\cdot d(x,y).

定理 (Banach不动点定理)
(X,d)(X,d)是完备度量空间, T:XXT:X\to Xcc-压缩映射, c(0,1)c\in (0,1), 则TT存在唯一的不动点xx_*, T(x)=xT(x_*)=x_*. 进一步x0X\forall x_0\in X,

d(Tn(x0),x)cn1cd(x0,T(x0))d(T^n(x_0),x_*)\leq \frac{c^n}{1-c}d(x_0,T(x_0))

证明
x0Xx_0\in X, 令xn=Tn(x0)x_n=T^n(x_0), {Tn(x0):nN}X\{T^n(x_0):n\in \mathbb{N}\}\subset X为Cauchy列,

d(Tn+1(x0),Tn(x0))d(T(Tn(x0)),T(Tn1(x0)))cd(Tn(x0),Tn1(x0))cnd(T(x0),x0)\begin{aligned} d(T^{n+1}(x_0),T^n(x_0))&\leq d(T(T^n(x_0)),T(T^{n-1}(x_0)))\\ &\leq c\cdot d(T^n(x_0),T^{n-1}(x_0))\\ &\leq\cdots\leq c^nd(T(x_0),x_0) \end{aligned}

d(Tn+k(x0),Tn(x0))d(Tn+k(x0),Tn+k1(x0))++d(Tn+1(x0),Tn(x0))(cn+k1++cn)d(T(x0),x0)cn1cd(T(x0),x0)\begin{aligned} d(T^{n+k}(x_0),T^n(x_0))&\leq d(T^{n+k}(x_0),T^{n+k-1}(x_0))+\cdots +d(T^{n+1}(x_0),T^n(x_0))\\ &\leq (c^{n+k-1}+\cdots+c^n)d(T(x_0),x_0)\\ &\leq\frac{c^n}{1-c}d(T(x_0),x_0) \end{aligned}

XX完备, 存在唯一xXx_*\in X, s.t.

Tn(x0)x,d(Tn(x0),x)0T^n(x_0)\to x_*,d(T^n(x_0),x_*)\to 0

Lipschitz性质与解的唯一性

定义
URd+1U\subset \mathbb{R}^{d+1}开, f:URdf:U\to \mathbb{R}^d连续, DUD\subset U, 称fLipx(D)f\in Lip_x(D), 若L=L(0)>0\exist L=L(0)>0 s.t. t,x,x\forall t,x,x', (t,x),(t,x)D(t,x),(t,x')\in D, 有

f(t,x)f(t,x)Lxx|f(t,x)-f(t,x')|\leq L|x-x'|

定义
f:URdf:U\to \mathbb{R}^d连续, 称fLipx,loc(U)f\in Lip_{x,loc}(U), 若KU\forall K\subset U, 都存在L(K)>0L(K)>0, s.t.

fLipx(K)f\in Lip_x(K)

推论
URd+1U\subset \mathbb{R}^{d+1}开, f:URdf:U\to \mathbb{R}^dC1C^1光滑 \Rightarrow fLipx,loc(U)f\in Lip_{x,loc}(U).

定理(Picard-Lindelöf)
URd+1U\subset \mathbb{R}^{d+1}开, f:URdf:U\to \mathbb{R}^d连续, 且fLipx,loc(U)f\in Lip_{x,loc}(U). 设(t0,x0)U(t_0,x_0)\in U, 则IVP{x˙=f(t,x)x(t0)=x0 \begin{cases} \dot{x}=f(t,x)\\ x(t_0)=x_0 \end{cases}
的解局部存在且唯一, 即存在δ>0\delta >0以及φ:[t0δ,t0+δ]R\varphi:[t_0-\delta,t_0+\delta]\to \mathbb{R} s.t. φ\varphi为IVP的解且在[t0δ,t0+δ][t_0-\delta,t_0+\delta]上是唯一解.

证明
R=[t0ϵ,t0+ϵ]×B(x0,ϵ),M=max(t,x)Rf(t,x),δ0=ϵMR=[t_0-\epsilon,t_0+\epsilon]\times \overline{B(x_0,\epsilon)},M=\max_{(t,x)\in R}|f(t,x)|,\delta_0=\frac{\epsilon}{M},
第一步: 构造一个完备度量空间X:=C([t0δ,t0+δ];B(x0,ϵ))X:=C([t_0-\delta,t_0+\delta];\overline{B(x_0,\epsilon)});
第二步: Picard映射T:XC([t0δ,t0+δ];Rd),ϕTϕT:X\to C([t_0-\delta,t_0+\delta];\mathbb{R}^d),\phi \mapsto T\phi

(Tϕ)(t)=x0+t0tf(τ,ϕ(τ))dτ,t[t0δ,t0+δ](T\phi)(t)=x_0+\int_{t_0}^tf(\tau,\phi(\tau))d\tau,t\in [t_0-\delta,t_0+\delta]

Tϕ(t)x0=t0tf(τ,ϕ(τ))dτt0tf(τ,ϕ(τ))dτtt0Mδ0Mϵ \begin{aligned} |T\phi(t)-x_0|&= |\int_{t_0}^tf(\tau,\phi(\tau))d\tau| \leq \int_{t_0}^t|f(\tau,\phi(\tau))|d\tau \\ &\leq |t-t_0|M\leq \delta_0M\leq \epsilon \end{aligned}
TϕX\Rightarrow T\phi\in X;
第三步: TT为压缩映射. ϕ,ψX\phi,\psi\in X,

Tϕ(t)Tψ(t)t0tf(τ,ϕ(τ))f(τ,ψ(τ))dτt0tLϕ(τ)ψ(τ)dτϕψ,t[t0δ,t0+δ]\begin{aligned} |T\phi(t)-T\psi(t)| &\leq \int_{t_0}^t|f(\tau,\phi(\tau))-f(\tau,\psi(\tau))|d\tau \\ &\leq \int_{t_0}^tL|\phi(\tau)-\psi(\tau)|d\tau \\ &\leq ||\phi-\psi||_{\infin},\forall t\in [t_0-\delta,t_0+\delta] \end{aligned}

δ=min{δ0,12L}\delta=\min\{\delta_0,\frac{1}{2L}\}

d(Tϕ,Tψ)=TϕTψLδϕψ=12ϕψ12d(ϕ,ψ)d(T\phi,T\psi)=||T\phi-T\psi||_{\infin}\leq L\delta||\phi-\psi||_{\infin}=\frac{1}{2}||\phi-\psi||_{\infin}\leq \frac{1}{2}d(\phi,\psi)

TT12\frac{1}{2}-压缩映射.
由Banach, 存在唯一的φX\varphi\in X s.t. Tφ=φT\varphi=\varphi, t[t0δ,to+δ]\forall t\in [t_0-\delta,t_o+\delta],

φ(t)=Tφ(t)=t0tf(τ,ϕ(τ))dτ\varphi(t)=T\varphi(t)=\int_{t_0}^tf(\tau,\phi(\tau))d\tau

[t0δ,t0+δ][t_0-\delta,t_0+\delta]φ\varphi为IVP唯一解.

Picard迭代

引理 一个著名积分

(t1t0)nn!=t0t1t0t2t0t3t0tndtn+1dtndt2\frac{(t_1-t_0)^n}{n!}=\int_{t_0}^{t_1}\int_{t_0}^{t_2}\int_{t_0}^{t_3}\cdots \int_{t_0}^{t_n}dt_{n+1}dt_n\cdots dt_2

δ=δ0=ϵM\delta=\delta_0=\frac{\epsilon}{M}, T:XXT:X\to X, ϕ,ψ,t0tt0+δ0\forall \phi,\psi,t_0\leq t \leq t_0+\delta_0

Tnϕ(t)Tnψ(t)=t0tf(t1,Tn1ϕ(t1))f(t1,Tn1ψ(t1))dt1Lt0tTn1ϕ(t1)Tn1ψ(t1)dt1Lt0tLt0t1Tn2ϕ(t2)Tn2ψ(t2)dt2dt1Lnt0tt0t1t0tn1ϕ(tn)ψ(tn)dtndt2dt1Lnϕψδ0nn!\begin{aligned} |T^n\phi(t)-T^n\psi(t)|&=|\int_{t_0}^tf(t_1,T^{n-1}\phi(t_1))-f(t_1,T^{n-1}\psi(t_1))dt_1|\\ &\leq L\int_{t_0}^t|T^{n-1}\phi(t_1)-T^{n-1}\psi(t_1)|dt_1\\ &\leq L\int_{t_0}^tL\int_{t_0}^{t_1}|T^{n-2}\phi(t_2)-T^{n-2}\psi(t_2)|dt_2dt_1\\ &\leq \cdots\\ &\leq L^n\int_{t_0}^t\int_{t_0}^{t_1}\cdots\int_{t_0}^{t_{n-1}}|\phi(t_n)-\psi(t_n)|dt_n \cdots dt_2dt_1\\ &\leq L^n ||\phi-\psi||_{\infin}\frac{\delta_0^n}{n!} \end{aligned}

TnϕTnψ(Lδ0)nn!ϕψ||T^n\phi-T^n\psi||_{\infin}\leq \frac{(L\delta_0)^n}{n!}||\phi-\psi||_{\infin}

断言: ϕX\forall \phi\in X, {Tnϕ}X\{T^n\phi\}\subset X为Cauchy列.
ψ=Tkϕ\psi =T^k\phi, 有

Tn+kϕTnϕ(Lδ0)nn!Tkϕϕ2(x0+ϵ)(Lδ0)nn!0,n||T^{n+k}\phi-T^n\phi||_{\infin}\leq \frac{(L\delta_0)^n}{n!}||T^k\phi-\phi||_{\infin}\leq 2(|x_0|+\epsilon)\frac{(L\delta_0)^n}{n!}\to 0,n\to \infin

ϕx0+ϵ||\phi||_{\infin}\leq|x_0|+\epsilon, 存在唯一的φ\varphi s.t. Tnϕφ,nT^n\phi \to \varphi,n\to \infin.

定理
IRI\subset \mathbb{R}区间, f:I×RdRdf:I\times \mathbb{R}^d\to \mathbb{R}^d连续, 且L>0\exist L>0, s.t. tI,x,xRd\forall t\in I,\forall x,x'\in \mathbb{R}^d, 均有

f(t,x)f(t,x)Lxx|f(t,x)-f(t,x')|\leq L|x-x'|

那么t0I,x0Rd\forall t_0\in I,\forall x_0\in \mathbb{R}^d, IVP{x˙=f(t,x)x(t0)=x0 \begin{cases} \dot{x}=f(t,x)\\ x(t_0)=x_0 \end{cases} 的解在II上存在且唯一.

证明
任取JIJ\subset I为紧区间, X=C(J;Rd)X=C(J;\mathbb{R}^d), T:XX,Tϕ(t)=x0+t0tf(τ,ϕ(τ))dτT:X\to X,T\phi(t)=x_0+\int_{t_0}^tf(\tau,\phi(\tau))d\tau, 证明同上, 得到单调上升JnJ_n, I=JnI=\cup J_n.

推论
IRI\subset \mathbb{R}区间, A:IMd(R)A:I\to M_d(\mathbb{R}), b:IRdb:I\to \mathbb{R}^d连续, 则IVP{X˙=A(t)X+b(t)X(t0)=X0 \begin{cases} \dot{X}=A(t)X+b(t)\\ X(t_0)=X_0 \end{cases} 的解在II上存在且唯一.

证明
JI\forall J\subset I为紧区间, A:JMd(R)A:J\to M_d(\mathbb{R}), L=maxtJA(t)<L=\max_{t\in J}||A(t)||<\infin, f(t,X):=A(t)X+b(t)f(t,X):= A(t)X+b(t), 对于tJ,X,YRdt\in J,X,Y\in \mathbb{R}^d,

f(t,X)f(t,Y)=A(t)(XY)A(t)XYLXY|f(t,X)-f(t,Y)|=|A(t)(X-Y)|\leq ||A(t)|||X-Y|\leq L|X-Y|

极大解与极大积分路线

极大解的定义与存在性

定义
ω=(t0,x0)\omega = (t_0,x_0), 称(ϕω,Iω)(\phi_\omega ,I_\omega)I(ω)\mathcal{I}(\omega)的一个极大解, 若以下两条成立:

  1. ϕω:IωRd\phi_\omega :I_\omega \to \mathbb{R}^dI(ω)\mathcal{I}(\omega)的解;
  2. (ψ,J)(\psi,J)也是I(ω)\mathcal{I}(\omega)的解, 且ψ\psiϕω\phi_\omega的延拓 (即IωJ,ψIω=ϕωI_\omega \subset J,\psi |_{I_\omega}=\phi_\omega) , 则J=Iω,ψ=ϕωJ=I_\omega,\psi=\phi_\omega.

注:
(ϕω,Iω)(\phi_\omega ,I_\omega)为极大解, 则IωI_\omega为开区间, 因为若Iω=(a,b]I_\omega =(a,b], (b,ϕω(b))U(b,\phi_\omega (b))\in U, ϕω\phi_\omega可以延拓到(a,b+ϵ)(a,b+\epsilon)上, 从而与上述2) 矛盾.

从现在开始, 总假设ω=(t0,x0)U\forall \omega=(t_0,x_0)\in U初值问题, I(ω)\mathcal{I}(\omega)的解总是局部存在且唯一.

定理
URd+1U\subset \mathbb{R}^{d+1}开, f:URdf:U\to \mathbb{R}^d连续且上述假设成立, 则(t0,ω0)U\forall (t_0,\omega_0)\in U, I(ω)\mathcal{I}(\omega)的极大解存在且唯一.

关键引理
(ϕ,I)(\phi,I)(ψ,J)(\psi,J)均为I(ω)\mathcal{I}(\omega)的解, 则ϕIJ=ψIJ\phi|_ {I\cap J} = \psi|_{I\cap J}.

证明
IJ=(a,b)t0I\cap J=(a,b) \ni t_0, ϕ(t0)=ψ(t0)=x0\phi(t_0)=\psi(t_0)=x_0.
反证: 不妨设t0<t1<b\exist t_0<t_1<b, s.t. ϕ(ti)ψ(t1)\phi(t_i)\neq \psi(t_1), t0t<t1\exist t_0\leq t_* <t_1, s.t. ϕ[t0,t]=ψ[t0,t],ϕ(t)=ψ(t)=x\phi|_{[t_0,t_*]}=\psi|_{[t_0,t_*]},\phi(t_*)=\psi(t_*)=x_*, 但δ>0,ϕ(t,t+δ)ψ(t,t+δ)\forall \delta >0,\phi|_{(t_*,t_*+\delta)}\neq\psi|_{(t_*,t_*+\delta)}, 由假设, I(t,x)\mathcal{I}(t_*,x_*)初值的解存在且唯一, 即δ0>0\exist \delta_0>0以及η:(tδ0,t+δ0)Rd\eta:(t_*-\delta_0,t_*+\delta_0)\to \mathbb{R}^dI(t,x)\mathcal{I}(t_*,x_*)(tδ0,t+δ0)(t_*-\delta_0,t_*+\delta_0)的唯一解, 矛盾.

(ϕ,I)(\phi,I)I(ω)\mathcal{I}(\omega)的一个局部解, 若II为开区间, 且ϕ:IRd\phi:I\to \mathbb{R}^d为解.
S={(ϕ,I):(ϕ,I)I(ω)的局部解}S=\{(\phi,I):(\phi,I)为\mathcal{I}(\omega)的局部解\},
定义Imax=(ϕ,I)SII_{\max}=\cup_{(\phi,I)\in S}I, 为开区间.
定义ϕmax:ImaxRd,tϕmax(t):=ϕt(t)\phi_{\max}:I_{\max}\to \mathbb{R}^d,\quad t\mapsto \phi_{\max}(t):=\phi_t(t), (ϕt,It)\exist (\phi_t,I_t), s.t. tItt\in I_t.
ϕmax(t)=f(t,ϕmax(t))\phi_{\max}'(t)=f(t,\phi_{\max}(t)), ϕmaxIt=ϕtIt\phi_{\max}|_{I_t}=\phi_t|_{I_t}, ϕmax(t)=ϕt(t)=f(t,ϕt(t))\phi_{\max}'(t)=\phi_t'(t)=f(t,\phi_t(t)).
断言: (ϕmax,Imax)(\phi_{\max},I_{\max})I(ω)\mathcal{I}(\omega)的一个极大解. 1) 成立; 对于2) , ψ:JRd\psi:J\to \mathbb{R}^dI(ω)\mathcal{I}(\omega)的解, 且ψ\psiϕmax\phi_{\max}的延拓\Rightarrow J=Imax,ψ=ϕmaxJ=I_{\max},\psi=\phi_{\max}.
断言: JJ为开区间. 若已证JJ为开区间, (ψ,J)(\psi,J)是一个局部解, JImaxImax=Jψ=ϕmaxJ\subset I_{\max} \Rightarrow I_{\max}=J \Rightarrow \psi=\phi_{\max}.
ψ:J=(a,b]Rd\psi:J=(a_*,b_*]\to \mathbb{R}^d为解, ψ~:J~=(a,b+δ)Rd\widetilde{\psi}:\widetilde{J}=(a_*,b_*+\delta)\to \mathbb{R}^d为解, (a,b+δ)ImaxJ=(a,b](a_*,b_*+\delta)\subset I_{\max} \subset J =(a_*,b_*], 矛盾. 从而成立.
唯一性: (ϕmax,Imax)(\phi_{\max},I_{\max})I(ω)\mathcal{I}(\omega)的极大解, (ψmax,Jmax)(\psi_{\max},J_{\max})也为极大解, 那么(ψmax,Jmax)(\psi_{\max},J_{\max})是一个和局部解, 有JmaxImaxJ_{\max}\subset I_{\max}, 同理有ImaxJmaxI_{\max}\subset J_{\max}, 从而Jmax=ImaxJ_{\max}= I_{\max}, 由引理知二者相等.

注:

  1. 假设(ϕmax,Imax)(\phi_{\max},I_{\max})I(ω)\mathcal{I}(\omega)的极大解, 则称ImaxI_{\max}I(ω)\mathcal{I}(\omega)的解的极大定义区间.
  2. 若没有假设, 用Zorn引理证明I(ω)\mathcal{I}(\omega)的极大解必存在.

定义
(ϕmax,Imax)(\phi_{\max},I_{\max})I(ω)\mathcal{I}(\omega)的极大解, 称Γϕmax={(t,ϕmax(t)):tImax}\Gamma_{\phi_{\max}}=\{(t,\phi_{\max}(t)):t\in I_{\max}\}极大积分曲线.

推论
(t0,ω0)(t_0,\omega_0)的极大积分曲线存在且唯一.

定义
Γ\Gamma是一条极大积分曲线, 若Γ\Gamma是某个I(ω)\mathcal{I}(\omega)的极大积分曲线.

极大解的几何性质

性质
Γ1\Gamma_1Γ2\Gamma_2x˙=f(t,x)\dot{x}=f(t,x)的两条极大积分曲线, 则要么Γ1Γ2=\Gamma_1 \cap \Gamma_2=\emptyset, 要么Γ1=Γ2\Gamma_1=\Gamma_2.

引理
Γ\GammaI(t0,x0)\mathcal{I}(t_0,x_0)的极大积分曲线, 且(t1,x1)Γ(t_1,x_1)\in \Gamma, 那么Γ\Gamma也是I(t1,x1)\mathcal{I}(t_1,x_1)的极大积分曲线.

证明
等价于证明I(t0,x0)\mathcal{I}(t_0,x_0)的极大解(ϕmax,Imax)(\phi_{\max},I_{\max})也是I(t1,x1)\mathcal{I}(t_1,x_1)的极大解(ψmax,Jmax)(\psi_{\max},J_{\max}). 易证.

性质的证明
Γ1\Gamma_1I(t0,x0)\mathcal{I}(t_0,x_0)极大积分曲线, Γ2\Gamma_2I(t1,x1)\mathcal{I}(t_1,x_1)极大积分曲线.
Γ1Γ2=\Gamma_1\cap \Gamma_2=\emptyset, 成立; 否则, (t,x)Γ1Γ2\exist (t_*,x_*)\in \Gamma_1\cap \Gamma_2, 从而Γ1\Gamma_1也是I(t,x)\mathcal{I}(t_*,x_*)极大积分曲线, Γ2\Gamma_2也是I(t,x)\mathcal{I}(t_*,x_*)极大积分曲线, 有Γ1=Γ2\Gamma_1=\Gamma_2.

定理
URd+1U\subset \mathbb{R}^{d+1}开, f:URdf:U\to \mathbb{R}^d连续, (t0,x0)U(t_0,x_0)\in U, 则过(t0,x0)(t_0,x_0)的极大积分曲线“趋向于UU的边界”, 即: 若(ϕmax,Imax)(\phi_{\max},I_{\max})I(t0,x0)\mathcal{I}(t_0,x_0)的极大解, Imax=(a,b)I_{\max}=(a,b), 则KD\forall K \subset D紧, 均存在a<t<t<ba<t_*<t^*<b, s.t. 当t(a,t)(t,b)t\in (a,t_*)\cup (t^*,b)时, (t,ϕmax(t))K(t,\phi_{\max}(t))\notin K.

证明
tt^*的存在性为例:
b=+b=+\infin, 那么tt^*存在是显然的;
b<+b<+\infin, t0t<b\exist t_0\leq t^* < b, s.t. 当t(t,b)t\in (t^*,b), (t,ϕmax(t))K(t,\phi_{\max}(t))\notin K.
反证: tnb\exist t_n \uparrow b, s.t. (tn,ϕ(tn))K(t_n,\phi(t_n))\in K紧. 不妨设ϕ(tn)x\phi(t_n)\to x_*, 取R=[b2ϵ,b+2ϵ]×B(x,2ϵ)UR=[b-2\epsilon,b+2\epsilon]\times\overline{B(x_*,2\epsilon)}\subset U, 令M=max(t,x)Rf(t,x)M=\max_{(t,x)\in R}|f(t,x)|, 取tnt_n, s.t. bϵM<tn<bb\frac{\epsilon}{M}<t_n<b, 对(tn,ϕ(tn))(t_n,\phi(t_n))使用Peano延拓定理: {x˙=f(t,x)x(tn)=ϕ(tn)\begin{cases} \dot{x}=f(t,x)\\ x(t_n)=\phi(t_n) \end{cases}解在[tnϵM,tn+ϵM][t_n-\frac{\epsilon}{M},t_n+\frac{\epsilon}{M}]上存在, 设解为ψ(t)\psi(t), 定义

ψ~(t)={ϕ(t),ttnψ(t),tn<t<tn+ϵM\widetilde{\psi}(t)= \begin{cases} \phi(t),\quad t\leq t_n\\ \psi(t),\quad t_n<t<t_n+\frac{\epsilon}{M} \end{cases}

ψ~(t)\widetilde{\psi}(t)为解, 与ϕ\phiI(t0,x0)\mathcal{I}(t_0,x_0)的极大解矛盾.

自治系统的极大解的性质

VRdV\subset \mathbb{R}^d为开集, g:VRdg:V\to \mathbb{R}^d连续. 假设{x˙=g(x)x(t0)=x0\begin{cases} \dot{x}=g(x)\\ x(t_0)=x_0 \end{cases}的解总是局部存在且唯一.

f:R×VRd,(t,x)f(t,x):=g(x)f:\mathbb{R}\times V\to \mathbb{R}^d,\quad (t,x)\mapsto f(t,x):=g(x).

性质
x0Vx_0\in V, (ϕmax,Imax)(\phi_{\max},I_{\max})I(0,x0)\mathcal{I}(0,x_0)的极大解 \Leftrightarrow (ψmax,Jmax)(\psi_{\max},J_{\max})I(t0,x0)\mathcal{I}(t_0,x_0)的极大解, 其中ψmax(t)=ϕmax(tt0)\psi_{\max}(t)=\phi_{\max}(t-t_0), Jmax=t0+ImaxJ_{\max}=t_0+I_{\max}.

定义
{x˙=g(x)x(t0)=x0\begin{cases} \dot{x}=g(x)\\ x(t_0)=x_0 \end{cases}的极大解为(ϕmax,Imax)(\phi_{\max},I_{\max}), 定义I(t0,x0)\mathcal{I}(t_0,x_0)的通过x0x_0极大相曲线ϕmax\phi_{\max}的像, 即ϕmax(Imax)\phi_{\max}(I_{\max}).

推论
x˙=g(x)\dot{x}=g(x), x0V\forall x_0\in V, 则

  1. 通过x0x_0的极大相曲线唯一;
  2. 两条极大相曲线要么不相交, 要么完全重合.

性质
VRdV\subset \mathbb{R}^d, g:VRdg:V\to \mathbb{R}^d, x˙=g(x)\dot{x}=g(x), 任取KVK\subset V, KK紧, x0V\forall x_0 \in V, 设I(0,x0)\mathcal{I}(0,x_0)的解为(ϕmax,Imax)(\phi_{\max},I_{\max}), Imax=(a,b)I_{\max}=(a,b), 则

  1. 要么b=+b=+\infin* (或者a=a=-\infin) *;
  2. 要么b<+b<+\infin, 且存在0t<b0\leq t^*<b, s.t. ϕ(t)K\phi(t)\notin K, t<t<bt^*<t<b* (或者a>a>-\infin, 且存在a<t0a< t_*\leq 0, s.t. ϕ(t)K\phi(t)\notin K, a<t<ta<t<t_*) *.

证明
b=+b=+\infin, 成立. 下设b<+b<+\infin.
f:Rd×VRd,(t,x)f(t,x)=g(x)f:\mathbb{R}^d\times V\to \mathbb{R}^d,\quad (t,x)\mapsto f(t,x)=g(x), 取K^=[0,b]×KRd+1\hat{K}=[0,b]\times K\subset \mathbb{R}^{d+1}紧, 由非自治系统结论知, 0t<b\exist 0\leq t<b, s.t. (t,ϕ(t))K^(t,\phi(t))\notin \hat{K}, 从而ϕ(t)K\phi(t)\notin K.

解关于初值和参数的连续依赖性

对于{x˙=f(t,x)x(s)=z\begin{cases} \dot{x}=f(t,x)\\ x(s)=z \end{cases}, 设解为ϕ(t,s,z)\phi(t,s,z).

Grönwall不等式

我们考虑对于

ϕ(t,s,z)=z+stf(τ,ϕ(τ,s,z))dτ\phi(t,s,z)=z+\int_s^tf(\tau,\phi(\tau,s,z))d\tau

ϕ(t,s,z)=z+stf(τ,ϕ(τ,s,z))dτ\phi(t,s,z')=z'+\int_s^tf(\tau,\phi(\tau,s,z'))d\tau

定义

η(t):=ϕ(t,s,z)ϕ(t,s,z)zz+stf(τ,ϕ(τ,s,z))f(τ,ϕ(τ,s,z))dτzz+Lstϕ(τ,s,z)ϕ(τ,s,z)dτ\begin{aligned} \eta(t)&:=|\phi(t,s,z)-\phi(t,s,z')|\\ &\leq|z-z'|+\int_s^t|f(\tau,\phi(\tau,s,z))-f(\tau,\phi(\tau,s,z'))|d\tau\\ &\leq|z-z'|+L\int_s^t|\phi(\tau,s,z)-\phi(\tau,s,z')|d\tau \end{aligned}

0η(t)zz+Lstη(τ)dτ0\leq \eta(t) \leq|z-z'|+L\int_s^t\eta(\tau)d\tau

η(t)=a+Lstη(τ)dτ\eta(t)=a+L\int_s^t\eta(\tau)d\tau, 那么η(t)=Lη(t)\eta'(t)=L\eta(t), 有η(t)=aeL(ts)\eta(t)=ae^{L(t-s)}. 我们希望η(t)zzeL(ts)\eta(t)\leq |z-z'|e^{L(t-s)}.

**定理 (Grönwall不等式) **
η:[t0,t1][0,)\eta:[t_0,t_1]\to[0,\infin)连续, 设a,b0a,b\geq 0, s.t.

η(t)a+bt0tη(τ)dτ,t[t0,t1]\eta(t)\leq a+b\int_{t_0}^t \eta(\tau)d\tau,\quad t\in[t_0,t_1]

0η(t)aeb(tt0)0\leq \eta(t) \leq ae^{b(t-t_0)}.

证明
先设a>0a>0, 令φ(t):=a+bt0tη(τ)dτ\varphi(t):=a+b\int_{t_0}^t \eta(\tau)d\tau, 0η(t)φ(t)0\leq \eta(t)\leq \varphi(t), 那么φC1\varphi\in C^1, φ(t)=bη(t)\varphi'(t)=b\eta(t), 从而

(lnφ(t))=φ(t)φ(t)=bη(t)φ(t)b(\ln\varphi(t))'= \frac{\varphi'(t)}{\varphi(t)}=\frac{b\eta(t)}{\varphi(t)}\leq b

lnφ(t)lnφ(t0)=t0t(lnϕ(τ))dτb(tt0)\ln \varphi(t)-\ln \varphi(t_0)=\int_{t_0}^t (\ln \phi(\tau))'d\tau \leq b(t-t_0)

从而φ(t)φ(t0)eb(tt0)\frac{\varphi(t)}{\varphi(t_0)}\leq e^{b(t-t_0)}, 0η(t)φ(t)aeb(tt0)0\leq \eta(t)\leq \varphi(t)\leq ae^{b(t-t_0)}.
下设a=0a=0. a>0\forall a'>0,

0η(t)aeb(tt0)aeb(t1t0),t[t0,t1]0\leq \eta(t)\leq a'e^{b(t-t_0)}\leq a'e^{b(t_1-t_0)},\quad t\in[t_0,t_1]

从而η(t)0\eta(t)\equiv 0.

解关于初值的连续依赖

引理
f:URdf:U\to \mathbb{R}^d连续, fLipx,loc(U)f\in Lip_{x,loc}(U), 设(s,z)U(s,z)\in U, 设ϕ(t,s,z):[sκ1,s+κ2]Rd\phi(t,s,z):[s-\kappa_1,s+\kappa_2]\to \mathbb{R}^dI(s,z)\mathcal{I}(s,z)在区间[sκ1,s+κ2][s-\kappa_1,s+\kappa_2]上的解. 记Γ={(t,ϕ(t,s,z)):tI}\Gamma=\{(t,\phi(t,s,z)):t\in I\}, 令Γ(ϵ)={(t,x)U:d((t,x),Γ)ϵ}\Gamma(\epsilon)=\{(t,x)\in U:d((t,x),\Gamma)\leq \epsilon \}, 可知Γ(ϵ)U\Gamma(\epsilon)\subset U为紧集. 设L=L(Γ(ϵ))>0L=L(\Gamma(\epsilon))>0, δ=δ(L,κ1,κ2,ϵ)>0\exist \delta=\delta(L,\kappa_1,\kappa_2,\epsilon)>0, s.t. zB(z,δ)\forall z'\in B(z,\delta), I(s,z)\mathcal{I}(s,z')的解ϕ(t,s,z)\phi(t,s,z')的定义区间至少也为I=[sκ1,s+κ2]I=[s-\kappa_1,s+\kappa_2], 且

ϕ(t,s,z)ϕ(t,s,z)zzeLts|\phi(t,s,z)-\phi(t,s,z')|\leq|z-z'|e^{L|t-s|}

证明

ϕ(t,s,z)=z+stf(τ,ϕ(τ,s,z))dτ\phi(t,s,z)=z+\int_s^t f(\tau,\phi(\tau,s,z))d\tau

ϕ(t,s,z)=z+stf(τ,ϕ(τ,s,z))dτ\phi(t,s,z')=z'+\int_s^t f(\tau,\phi(\tau,s,z'))d\tau

η(t):=ϕ(t,s,z)ϕ(t,s,z)zz+stf(τ,ϕ(τ,s,z))f(τ,ϕ(τ,s,z))dτzz+Lstϕ(τ,s,z)ϕ(τ,s,z)dτzz+Lstη(τ)dτ\begin{aligned} \eta(t)&:=|\phi(t,s,z)-\phi(t,s,z')| \\ &\leq |z-z'|+\int_s^t|f(\tau,\phi(\tau,s,z))-f(\tau,\phi(\tau,s,z'))|d\tau\\ &\leq |z-z'|+L\int_s^t|\phi(\tau,s,z)-\phi(\tau,s,z')|d\tau\\ &\leq |z-z'|+L\int_s^t \eta(\tau)d\tau \end{aligned}

zB(z,δ)\forall z'\in B(z,\delta), 设ϕ(t,s,z)\phi(t,s,z')I(s,z)\mathcal{I}(s,z')的解, 由极大积分曲线离开任何紧子集, 对Γ(s)\Gamma(s), 存在T>sT>s, s.t. (t,ϕ(t,s,z))Γ(ϵ)(t,\phi(t,s,z'))\in \Gamma(\epsilon), t[s,T]t\in[s,T]. tnT\exist t_n \downarrow T, s.t.(tn,ϕ(tn,s,z))Γ(ϵ)(t_n,\phi(t_n,s,z))\notin \Gamma(\epsilon).
断言: Ts+κ2T\geq s+\kappa_2.
否则s<T<s+κ2s<T<s+\kappa_2, 则有d((T,ϕ(T,s,z)),Γ)=ϵd((T,\phi(T,s,z')),\Gamma)=\epsilon, 对stT\forall s\leq t \leq T, 有

η(t)zz+Lstη(τ)dτ\eta(t)\leq |z-z'|+L\int_s^t \eta(\tau)d\tau

由Grönwall

0η(t)zzeL(ts)0\leq \eta(t)\leq |z-z'|e^{L(t-s)}

那么

(T,ϕ(T,s,z))(T,ϕ(T,s,z))=ϕ(T,s,z)ϕ(T,s,z)=η(T)zzeL(Ts)δeLκ2=ϵ2\begin{aligned} |(T,\phi(T,s,z))-(T,\phi(T,s,z'))|&=|\phi(T,s,z)-\phi(T,s,z')|=\eta(T)\\ &\leq |z-z'|e^{L(T-s)}\\ &\leq \delta e^{L\kappa_2}=\frac{\epsilon}{2} \end{aligned}

矛盾, 从而断言成立.

定理
(s,z)U\forall (s,z)\in U, 记I(s,z)\mathcal{I}(s,z)的极大解为(ϕ(t,s,z),I(s,z))(\phi(t,s,z),I_{(s,z)}), 定义W={(t,s,z):(s,z)U,tI(s,z)}Rd+2W=\{(t,s,z):(s,z)\in U,t\in I_{(s,z)}\}\subset \mathbb{R}^{d+2}, 则WW为开集, 且为ϕ\phi的定义域, ϕ\phiWW上连续.

证明
σ0=(t0,s0,z0)W\forall \sigma_0=(t_0,s_0,z_0)\in W, δ>0,C>0\exist \delta>0,C>0, s.t. U(δ0):=(t0δ,t0+δ)×(s0δ,s0+δ)×B(z0,δ)WU(\delta_0):=(t_0-\delta,t_0+\delta)\times(s_0-\delta,s_0+\delta)\times B(z_0,\delta)\subset W, 且σ=(t,s,z)U(σ0)\forall \sigma=(t,s,z)\in U(\sigma_0), 有

ϕ(t,s,z)ϕ(t0,s0,z0)C(tt0+ss0+zz0)|\phi(t,s,z)-\phi(t_0,s_0,z_0)|\leq C(|t-t_0|+|s-s_0|+|z-z_0|)

zs=ϕ(s,s0,z0)z_s=\phi(s,s_0,z_0), (s,zs)Γ(s,z0)(s,z_s)\in \Gamma(s,z_0), 那么I(s,zs)\mathcal{I}(s,z_s)的极大解ϕ(t,s,zs)=ϕ(t,s0,z0)\phi(t,s,z_s)=\phi(t,s_0,z_0).
t0I(s0,z0)t_0\in I_{(s_0,z_0)}, δ0>0\exist \delta_0>0, s.t. [t0δ0,t0+δ0]I(s0,z0)[t_0-\delta_0,t_0+\delta_0]\subset I_{(s_0,z_0)}, 记Γ={(t,ϕ(t,s0,z0)):t[s0δ0,t0+δ0]}\Gamma=\{(t,\phi(t,s_0,z_0)):t\in [s_0-\delta_0,t_0+\delta_0]\}, M=max(t,x)Γ(ϵ)f(t,x)M=\max_{(t,x)\in \Gamma(\epsilon)}|f(t,x)|, 对(s,zs)(s,z_s)(s,z)(s,z)用性质, 有zzs<δ1=eL(t0s0+2δ0)ϵ/2|z-z_s|<\delta_1=e^{-L(t_0-s_0+2\delta_0)}\epsilon/2, 故ϕ(t,s,z)\phi(t,s,z)的解也至少在[s0+δ0,t0+δ0][s_0+\delta_0,t_0+\delta_0]上存在且连续, 那么zzszz0+z0zs<δ+Mss0<δ+Mδ<δ1|z-z_s|\leq|z-z_0|+|z_0-z_s|<\delta+M|s-s_0|<\delta+M\delta<\delta_1. 当δ=δ1/(1+M)\delta=\delta_1/(1+M)ss0<δ,zz0<δ|s-s_0|<\delta,|z-z_0|<\delta, 故ϕ(t,s,z)\phi(t,s,z)至少在[s0δ0,t0+δ0][s_0-\delta_0,t_0+\delta_0]上有定义, (t0δ,t0+δ)[s0δ0,t0+δ0]I(s,t)(t_0-\delta,t_0+\delta)\subset[s_0-\delta_0,t_0+\delta_0]\subset I_{(s,t)}, (t0δ,t0+δ)×(s0δ,s0+δ)×B(z0,δ)W(t_0-\delta,t_0+\delta)\times (s_0-\delta,s_0+\delta)\times B(z_0,\delta)\subset W, 从而WW为开集.

ϕ(t,s,z)ϕ(t0,s0,z0)ϕ(t,s,z)ϕ(t,s0,z0)+ϕ(t,s0,z0)ϕ(t0,s0,z0)ϕ(t,s,z)ϕ(t,s,zs)+ϕ(t,s0,z0)ϕ(t0,s0,z0)ϕ(t,s,z)ϕ(t,s,zs)+t0tf(τ,s0,z0)dτzzseLκ+Mtt0(zz0+Mss0)eLκ+Mtt0\begin{aligned} |\phi(t,s,z)-\phi(t_0,s_0,z_0)|&\leq |\phi(t,s,z)-\phi(t,s_0,z_0)|+|\phi(t,s_0,z_0)-\phi(t_0,s_0,z_0)|\\ &\leq |\phi(t,s,z)-\phi(t,s,z_s)|+|\phi(t,s_0,z_0)-\phi(t_0,s_0,z_0)|\\ &\leq |\phi(t,s,z)-\phi(t,s,z_s)|+\int_{t_0}^t|f(\tau,s_0,z_0)|d\tau\\ &\leq |z-z_s|e^{L\kappa}+M|t-t_0|\\ &\leq (|z-z_0|+M|s-s_0|)e^{L\kappa}+M|t-t_0| \end{aligned}

解关于参数的连续依赖

U~Rd+1+d\tilde{U}\subset \mathbb{R}^{d+1+d'}开, f:U~Rdf:\tilde{U}\to \mathbb{R}^d连续, 考虑IVP{x˙=f(t,x,λ)x(s)=z\begin{cases} \dot{x}=f(t,x,\lambda)\\ x(s)=z \end{cases}的解ϕ(t,s,z,λ)\phi(t,s,z,\lambda).

定义
fLip(x,λ),loc(U~)f\in Lip_{(x,\lambda),loc}(\tilde{U}), 若KU~\forall K\subset \tilde{U}为紧集, L(K)>0\exist L(K)>0, s.t.

f(t,x,λ)f(t,x,λ)L(xx+λλ)|f(t,x,\lambda)-f(t,x',\lambda')|\leq L(|x-x'|+|\lambda-\lambda'|)

性质
U~Rd+1+d\tilde{U}\subset \mathbb{R}^{d+1+d'}开, f:U~Rdf:\tilde{U}\to \mathbb{R}^d连续且fLip(x,λ),loc(U~)f\in Lip_{(x,\lambda),loc}(\tilde{U}), (s,z,λ)U~\forall(s,z,\lambda)\in \tilde{U}, 记I(s,z,λ)\mathcal{I}(s,z,\lambda)的极大解为(ϕ(t,s,z,λ),I(s,z,λ))(\phi(t,s,z,\lambda),I_{(s,z,\lambda)}), 则W~:={(t,s,z,λ):(s,z,λ)U~,tI(s,z,λ)}\tilde{W}:=\{(t,s,z,\lambda):(s,z,\lambda)\in\tilde{U},t\in I_{(s,z,\lambda)}\}Rd+1+d\mathbb{R}^{d+1+d'}中的开集, 其为ϕ\phi的定义域, 进一步ϕ\phiW~\tilde{W}上连续.

证明
参数变初值
F:U~Rd+d,(t,x,y)(f(t,x,y),0)F:\tilde{U}\to \mathbb{R}^{d+d'},\quad (t,x,y)\mapsto (f(t,x,y),0), 那么FC(U~)Lip(x,y),loc(U~)F\in C(\tilde{U})\cap Lip_{(x,y),loc}(\tilde{U}), 对于{X˙=F(t,X)X(s)=(z,λ)\begin{cases} \dot{X}=F(t,X)\\ X(s)=(z,\lambda) \end{cases}, X=(x,y)X=(x,y), 其解ϕ(t,s,z,λ)\phi(t,s,z,\lambda), 那么ϕ(t,s,z,λ)\phi(t,s,z,\lambda)W~\tilde{W}上连续, (x˙,y˙)=(f(t,x,y),0)(\dot{x},\dot{y})=(f(t,x,y),0), {x˙=f(t,x,y)x(s)=zy˙=0y(s)=λ\begin{cases} \dot{x}=f(t,x,y) \quad x(s)=z\\ \dot{y}=0 \quad y(s)=\lambda \end{cases}, 有y(t)λy(t)\equiv \lambda, 带入上方即有结论正确.

解关于初值和参数的光滑依赖性

C1C^1 光滑情形

f:URdf:U\to \mathbb{R}^d, fC1(U;Rd)f\in C^1(U;\mathbb{R}^d), 那么fC(U)Lipx,loc(U)f\in C(U)\cap Lip_{x,loc}(U).

对于ϕ(t,s,z)=z+stf(τ,ϕ(τ,s,z))dτ\phi(t,s,z)=z+\int_s^t f(\tau,\phi(\tau,s,z))d\tau,

ϕz(t,s,z)=Id+stfx(τ,ϕ(τ,s,z))ϕz(τ,s,z)dτ\frac{\partial \phi}{\partial z}(t,s,z)=I_d+\int_s^t\frac{\partial f}{\partial x}(\tau,\phi(\tau,s,z))\frac{\partial \phi}{\partial z}(\tau,s,z)d\tau

记为Φ(t)=Id+stA(τ)Φ(τ)dτ\Phi(t)=I_d+\int_s^t A(\tau)\Phi(\tau)d\tau, 则Φ(t)=A(t)Φ(t)\Phi'(t)=A(t)\Phi(t).

考虑x˙=f(t,x)\dot{x}=f(t,x)一阶变分方程{X˙=A(t)XX(s)=Id\begin{cases} \dot{X}=A(t)X \\ X(s)=I_d \end{cases}.

A(t,s,z):=fx(t,ϕ(t,s,z))A(t,s,z):=\frac{\partial f}{\partial x}(t,\phi(t,s,z))连续, 下面讨论{X˙=A(t,s,z)X=F(t,X,s,z)X(s)=Id\begin{cases} \dot{X}=A(t,s,z)X=F(t,X,s,z) \\ X(s)=I_d \end{cases}. 记ω=(s,z)\omega=(s,z), 将ss换为τ\tau.

引理
IRI\subset \mathbb{R}紧, KRmK\subset \mathbb{R}^m紧, A:I×KMd(R),(t,ω)A(t,ω)A:I\times K\to M_d(\mathbb{R}),\quad (t,\omega)\mapsto A(t,\omega)连续, 取τI\tau\in I, 取ωK\omega\in K, 取BMd(R)B\in M_d(\mathbb{R}), 则{X˙=A(t,ω)XX(τ)=B\begin{cases} \dot{X}=A(t,\omega)X \\ X(\tau)=B \end{cases}的解在II上有定义且唯一. 记解为Φ(t,τ,ω)\Phi(t,\tau,\omega), 则Φ\Phi的定义域为I×I×KI\times I\times KΦ\PhiI×I×KI\times I\times K上连续.

证明
S=C(I×I×K;Md(R))S=C(I\times I\times K;M_d(\mathbb{R})), 定义P:SS,ϕ(t,τ,ω)(Pϕ)(t,τ,ω)P:S\to S,\quad \phi(t,\tau,\omega)\mapsto (P\phi)(t,\tau,\omega), 其中

(Pϕ)(t,τ,ω):=B+τtA(u,ω)ϕ(u,τ,ω)du(P\phi)(t,\tau,\omega):=B+\int_\tau^tA(u,\omega)\phi(u,\tau,\omega)du

可以证明{Pnϕ}\{P^n\phi\}SS中Cauchy列, 设PnϕΦP^n\phi \to \Phi, Φ(t,τ,ω)=B+τtA(u,ω)Φ(u,τ,ω)du\Phi(t,\tau,\omega)=B+\int_\tau^t A(u,\omega)\Phi(u,\tau,\omega)du.

性质
(t,ω)VRd+1(t,\omega)\in V\subset \mathbb{R}^{d+1}, ωRd\forall \omega\in \mathbb{R}^d, 定义VV的截口Vω={tR:(t,ω)V}V_\omega=\{t\in \mathbb{R}:(t,\omega)\in V\}, 设VωV_\omega均为开区间, A:VMdR,(t,ω)A(t,ω)A:V\to M_d{\mathbb{R}},\quad (t,\omega)\mapsto A(t,\omega), AA连续. 固定BMd(R)B\in M_d(\mathbb{R}), (τ,ω)V\forall (\tau,\omega)\in V, 考虑初值问题{X˙=A(t,ω)XX(τ)=B\begin{cases} \dot{X}=A(t,\omega)X \\ X(\tau)=B \end{cases}, 则该初值问题的解在VωV_\omega上存在且唯一, 记该解为ϕ(t,τ,ω)\phi(t,\tau,\omega), 定义W={(t,τ,ω):(τ,ω)V,tVm}W=\{(t,\tau,\omega):(\tau,\omega)\in V,t\in V_m\}, 则ϕ\phiWW上连续.

证明
固定(τ,ω)V(\tau,\omega)\in V, 固定(τ0,ω0,t0)(\tau_0,\omega_0,t_0), ωVω\omega \to V_\omega, 任取II, s.t. t0,τ0IVωt_0,\tau_0 \in I \subset V_\omega紧, 取K=B(ω0,δ)K=\overline{B(\omega_0,\delta)}, 使用引理: 有解Φ(t,τ,ω)\Phi(t,\tau,\omega)I×I×B(ω0,δ)I\times I\times \overline{B(\omega_0,\delta)}上连续.

V={(t,s,z):(s,z)U,tI(s,z)}V=\{(t,s,z):(s,z)\in U,t\in I_{(s,z)}\}, A:VMd(R),(t,s,z)A(t,s,z)=fx(t,ϕ(t,s,z))A:V\to M_d(\mathbb{R}),\quad (t,s,z)\mapsto A(t,s,z)=\frac{\partial f}{\partial x}(t,\phi(t,s,z)), 初值问题{X˙=A(t,s,z)XX(τ)=Id\begin{cases} \dot{X}=A(t,s,z)X \\ X(\tau)=I_d \end{cases}的解存在且唯一, 记为Φ(t,τ,s,z)\Phi(t,\tau,s,z), W={(t,τ,s,z):(s,z)U,τ,tI(s,z)}W=\{(t,\tau,s,z):(s,z)\in U,\tau,t\in I_{(s,z)}\}, Φ\PhiWW上连续.

初值问题{X˙=A(t,s,z)XX(s)=Id\begin{cases} \dot{X}=A(t,s,z)X \\ X(s)=I_d \end{cases}的解记为D(t,s,z)=Φ(t,τ,s,z)D(t,s,z)=\Phi(t,\tau,s,z). 定义域为V={(t,s,z):(s,z)U,tI(s,z)}V=\{(t,s,z):(s,z)\in U,t\in I_{(s,z)}\}.

有限增量定理
URdU\subset \mathbb{R}^d开, f:URdf:U\to \mathbb{R}^dC1C^1光滑, [z0,z]U[z_0,z]\subset U, 则

f(z)f(z0)f(z0)(zz0)supξ[z0,z]f(ξ)f(z0)zz0|f(z)-f(z_0)-f'(z_0)(z-z_0)|\leq \sup_{\xi\in [z_0,z]}||f'(\xi)-f'(z_0)|||z-z_0|

引理
URd+1U\subset \mathbb{R}^{d+1}, f:URdf:U\to \mathbb{R}^dC1C^1的, (s,z)U(s,z)\in U, I(s,z)\mathcal{I}(s,z)的解ϕ(t,s,z)\phi(t,s,z)的定义域为WW, W={(t,s,z):(s,z)U,tI(s,z)}W=\{(t,s,z):(s,z)\in U,t\in I_{(s,z)}\}为开集, 则ϕz\frac{\partial \phi}{\partial z}WW上存在且连续.

证明
Γ={(t,ϕ(t,s,z)):t[s,t0]}\Gamma=\{(t,\phi(t,s,z)):t\in[s,t_0]\}, M=max(t,x)Γ(ϵ0)fx(t,x)M=\max_{(t,x)\in\Gamma(\epsilon_0)}|\frac{\partial f}{\partial x}(t,x)|, fx\frac{\partial f}{\partial x}的连续模

δ(ϵ)=sup{fx(p)fx(q):p,qΓ(ϵ0),pq<ϵ}\delta(\epsilon)=\sup \{||\frac{\partial f}{\partial x}(p)-\frac{\partial f}{\partial x}(q)||:p,q\in \Gamma(\epsilon_0),|p-q|<\epsilon\}

考虑ϕ(t0,s,z)ϕ(t0,s,z)\phi(t_0,s,z')-\phi(t_0,s,z), 取δ>0\delta>0, 当zz<δ|z'-z|<\delta, ϕ(t,s,z)\phi(t,s,z')至少在[s,t0][s,t_0]上存在且位于Γ(ϵ0)\Gamma(\epsilon_0)内, 且

ϕ(t,s,z)=ϕ(t,s,z)zz|\phi(t,s,z')=\phi(t,s,z)|\leq |z'-z|

D(t,s,z)D(t,s,z){X˙=fx(t,ϕ(t,s,z))XX(s)=Id\begin{cases} \dot{X}=\frac{\partial f}{\partial x}(t,\phi(t,s,z))X \\ X(s)=I_d \end{cases}的解, 而

D(t,s,z)=Id+stfx(τ,ϕ(τ,s,z))D(τ,s,z)dτD(t,s,z)=I_d+\int_s^t\frac{\partial f}{\partial x}(\tau,\phi(\tau,s,z))D(\tau,s,z)d\tau

ϕ(t,s,z)ϕ(t,s,z)=(zz)+stf(τ,ϕ(τ,s,z))f(τ,ϕ(τ,s,z))dτ\phi(t,s,z')-\phi(t,s,z)=(z'-z)+\int_s^t f(\tau,\phi(\tau,s,z'))-f(\tau,\phi(\tau,s,z))d\tau

那么

η(t):=ϕ(t,s,z)ϕ(t,s,z)D(t,s,z)(zz)=(zz)+stf(τ,ϕ(τ,s,z))f(τ,ϕ(τ,s,z))dτ[(zz)+stfx(τ,ϕ(τ,s,z))D(τ,s,z)(zz)dτ]=stfx(τ,ϕ(τ,s,z))(ϕ(τ,s,z)ϕ(τ,s,z)D(τ,s,z)(zz))+Δ(zz)dτ\begin{aligned} \eta(t)&:=\phi(t,s,z')-\phi(t,s,z)-D(t,s,z)(z'-z)\\ &=(z'-z)+\int_s^t f(\tau,\phi(\tau,s,z'))-f(\tau,\phi(\tau,s,z))d\tau-[(z'-z)+\int_s^t\frac{\partial f}{\partial x}(\tau,\phi(\tau,s,z))D(\tau,s,z)(z'-z)d\tau]\\ &=\int_s^t\frac{\partial f}{\partial x}(\tau,\phi(\tau,s,z))(\phi(\tau,s,z')-\phi(\tau,s,z)-D(\tau,s,z)(z'-z))+\Delta(z'-z)d\tau \end{aligned}

后半部分

Δ(z,z)ϕ(τ,s,z)ϕ(τ,s,z)δ(ϕ(τ,s,z)ϕ(τ,s,z))Czzδ(czz)|\Delta(z',z)| \leq |\phi(\tau,s,z')-\phi(\tau,s,z)|\leq\delta(|\phi(\tau,s,z)-\phi(\tau,s,z)|) \leq C|z-z'|\delta(c|z-z'|)

从而

η(t)stMη(τ)dτ+stΔ(z,z)dτstMη(τ)dτ+czzδ(c~zz)\eta(t)\leq \int_s^t M\eta(\tau)d\tau+\int_s^t |\Delta(z',z)|d\tau \leq \int_s^t M\eta(\tau)d\tau+c|z'-z|\delta(\widetilde{c}|z'-z|)

η(t)czzδ(c~zz)eMts=ο(zz)\eta(t)\leq c|z'-z|\delta(\widetilde{c}|z'-z|)e^{M|t-s|}=\omicron(|z'-z|)

这就证明了结论.

对于ϕs\frac{\partial \phi}{\partial s}的存在性和光滑性:

ϕs(t,s,z)=f(s,ϕ(s,s,z))+stfx(τ,ϕ(τ,s,z))ϕs(τ,s,z)dτ\frac{\partial \phi}{\partial s}(t,s,z)=-f(s,\phi(s,s,z))+\int_s^t\frac{\partial f}{\partial x}(\tau,\phi(\tau,s,z))\frac{\partial \phi}{\partial s}(\tau,s,z)d\tau

考察微分方程{X˙=fx(t,ϕ(t,s,z))XX(s)=f(s,z)\begin{cases} \dot{X}=\frac{\partial f}{\partial x}(t,\phi(t,s,z))X \\ X(s)=-f(s,z) \end{cases}即可.
类似地推导可以得到:
性质
ϕs\frac{\partial \phi}{\partial s}也在WW上存在且连续.

定理
I(s,z)\mathcal{I}(s,z)的解ϕ(t,s,z)\phi(t,s,z)定义在WW上, 且ϕC1(W)\phi\in C^1(W), ϕt=f(t,ϕ(t,s,z))\frac{\partial \phi}{\partial t}=f(t,\phi(t,s,z)).

证明

ϕz,ϕs,ϕtC0(W)\frac{\partial \phi}{\partial z},\frac{\partial \phi}{\partial s},\frac{\partial \phi}{\partial t}\in C^0(W)

推论
WRd+d+1W\in \mathbb{R}^{d+d'+1}, f:(t,x,λ)W^Rdf:(t,x,\lambda)\ni \hat{W}\to \mathbb{R}^d, fC1(W^)f\in C^1(\hat{W}), (s,z,λ)W^\forall(s,z,\lambda)\in \hat{W}, 记I(s,z,λ)\mathcal{I}(s,z,\lambda)的解为ϕ(t,s,z,λ)\phi(t,s,z,\lambda), 则ϕ\phi的定义域为W~={(t,s,z,λ):(s,z,λ)W^,tI(s,z,λ)}\widetilde{W}=\{(t,s,z,\lambda):(s,z,\lambda)\in \hat{W},t\in I_{(s,z,\lambda)}\}, 且ϕC(W~)\phi \in C(\widetilde{W}).

CkC^k 光滑情形

定理
(1) fC(k)(U;Rd)f\in C^{(k)}(U;\mathbb{R}^d), 则ϕ(t,s,z;f)C(k)(W)\phi(t,s,z;f)\in C^{(k)}(W);
(2) FC(k)(W^;Rd)F\in C^{(k)}(\hat{W};\mathbb{R}^d), 则ϕ(t,s,z,λ;F)C(k)(W^)\phi(t,s,z,\lambda;F)\in C^{(k)}(\hat{W}).
这里kN{}k\in \mathbb{N}\cup \{\infin\}.

证明
k=1k=1时成立;
我们归纳法证明的路径是(1)k(2)k(1)k+1(1)k\to(2)k\to(1)k+1\to\cdots
假设kk成立, URd+1U\subset \mathbb{R}^{d+1}, 先设f:URdf:U\to \mathbb{R}^d, fC(k+1)f\in C^{(k+1)}, 那么

ϕC(k+1)(W)ϕz,ϕs,ϕtC(k)(W)\phi\in C^{(k+1)}(W) \Leftrightarrow \frac{\partial \phi}{\partial z},\frac{\partial \phi}{\partial s},\frac{\partial \phi}{\partial t}\in C^{(k)}(W)

ϕt(t,s,z)=f(t,ϕ(t,s,z))C(k)\frac{\partial \phi}{\partial t}(t,s,z)=f(t,\phi(t,s,z))\in C^{(k)}

ϕz(t,s,z)=D(t,s,z)\frac{\partial \phi}{\partial z}(t,s,z)=D(t,s,z)

{X˙=fx(t,ϕ(t,s,z))X=F(t,X,s,z)X(s)=Id\begin{cases} \dot{X}=\frac{\partial f}{\partial x}(t,\phi(t,s,z))X=F(t,X,s,z) \\ X(s)=I_d \end{cases}断言FC(k)F\in C^{(k)}, 有D(t,s,z)=Φ(t,s,z,s)D(t,s,z)=\Phi(t,s,z,s).

ϕs(t,s,z)=D^(t,s,z)\frac{\partial \phi}{\partial s}(t,s,z)=\hat{D}(t,s,z)

{X˙=fx(t,ϕ(t,s,z))X=F(t,X,s,z)X(τ)=y\begin{cases} \dot{X}=\frac{\partial f}{\partial x}(t,\phi(t,s,z))X=F(t,X,s,z) \\ X(\tau)=y \end{cases}, 有D^(t,s,z)=Ψ(t,s,z,s,f(s,z))\hat{D}(t,s,z)=\Psi(t,s,z,s,-f(s,z)).
从而k+1k+1时成立, 归纳有结论成立.


ODE笔记-一阶ODE
http://imtdof.github.io/2024/10/29/ODE笔记-一阶ODE/
作者
UncleBob
发布于
2024年10月29日
许可协议