概率论期末复习

高频期中前考点

ξ\xiη\eta 是概率空间 (Ω,F,P)(\Omega, \mathcal{F}, \mathcal{P}) 上的可积随机变量, G\mathcal{G}, G1\mathcal{G}_1, G2\mathcal{G}_2F\mathcal{F} 的子 σ\sigma-域, 且 G1G2\mathcal{G}_1 \subseteq \mathcal{G}_2.

(1) 证明: E{E{ξG2}G1}=E{ξG1}E\left\{ E\{\xi | \mathcal{G}_2\} | \mathcal{G}_1 \right\} = E\{\xi | \mathcal{G}_1\}

(2) 证明: 若 ξ\xiη\eta 是有界的, 则

E{ξE{ηG}}=E{ηE{ξG}};E\{\xi E\{\eta | \mathcal{G}\}\} = E\{\eta E\{\xi | \mathcal{G}\}\};

(3) 证明: 若 ffB(R)\mathcal{B}(\mathbb{R}) 可测函数且 E{f(ξ)}<E\{|f(\xi)|\} < \infty, 则

Ωf(ξ)dP=Rf(x)dFξ(x)\int_{\Omega} f(\xi)d\mathcal{P} = \int_{\mathbb{R}} f(x)d\mathcal{F}_\xi(x)

(4) 证明: 若 D(ξ)<D(\xi) < \infty, 则

D(ξ)=E{D(ξG)}+D(E{ξG})D(\xi) = E\{D(\xi|\mathcal{G})\} + D(E\{\xi|\mathcal{G}\})

(5) 若 E{ξ}E\{\xi\}E{η}E\{\eta\} 存在, 且 E{ξη}=a.s.ηE\{\xi|\eta\} \stackrel{a.s.}{=} \etaE{ηξ}=a.s.ξE\{\eta|\xi\} \stackrel{a.s.}{=} \xi. 证明 ξ=a.s.η\xi \stackrel{a.s.}{=} \eta.

(6) 如果 ξ,η\xi,\eta 独立, E{ξ}=0E\{\xi\} = 0, p1p\geq 1, 证明 E{ξ+ηp}E{ηp}E\{|\xi + \eta|^p\} \geq E\{|\eta|^p\}.

多元正态分布的计算与证明

部分计算相关性质
ξN(a,B)\vec{\xi}\sim N(\vec{a},B), 其中 a=E(ξ)\vec{a}=E(\vec{\xi}), B=cov(ξ,ξ)B=cov(\vec{\xi},\vec{\xi}), 若 η=Anmξ+b\vec{\eta}=A_{nm}\vec{\xi}+\vec{b}, 则 ηN(Aa+b,ABAT)\vec{\eta}\sim N(A\vec{a}+\vec{b},ABA^T);
二元正态分布

p(X,Y)(x,y)=12πσ1σ21r2exp{12(1r2)((xμ1)2σ122r(xμ1)(yμ2)σ1σ2+(yμ2)2σ22)}p_{(X,Y)}(x,y)=\frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-r^2}}\exp\left\{-\frac{1}{2(1-r^2)}\left(\frac{(x-\mu_1)^2}{\sigma_1^2}-\frac{2r(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2}+\frac{(y-\mu_2)^2}{\sigma_2^2}\right)\right\}

边缘分布均为正态分布且条件期望 E(XY)=μ1+rσ1σ2(Yμ2)E(X|Y)=\mu_1+r\frac{\sigma_1}{\sigma_2}(Y-\mu_2), 条件方差 D(XY)=σ12(1r2)D(X|Y)=\sigma_1^2(1-r^2).

定理ξ1,ξ2,,ξn\xi_1,\xi_2,\cdots,\xi_n 独立同分布, ξ1N(a,σ2)\xi_1\sim N(a,\sigma^2), 则
(1) ξˉ=1nk=1nξk\bar{\xi}=\frac{1}{n}\sum_{k=1}^n\xi_kSn2=1nk=1n(ξkξˉ)2S_n^2=\frac{1}{n}\sum_{k=1}^n(\xi_k-\bar{\xi})^2 相互独立;
(2) ξˉN(a,σ2n)\bar{\xi}\sim N(a,\frac{\sigma^2}{n});
(3) nSn2σ2χ2(n1)\frac{nS_n^2}{\sigma^2}\sim \chi^2(n-1).

证明
(1) 记 ξ=(ξ1,ξ2,,ξn)T\vec{\xi}=(\xi_1,\xi_2,\cdots,\xi_n)^T, 则 ξN(a,B)\xi\sim N(\vec{a},B), B=σ2InB=\sigma^2I_n, 记

C=[1121120001n1n1n1n1n1n1n1n(n1)n1n1n1n1n1n1n]C=\begin{bmatrix} \frac{1}{\sqrt{1}\sqrt{2}}&\frac{-1}{\sqrt{1}\sqrt{2}}&0&\cdots&0&0\\ \vdots&\vdots&\vdots&\ddots&\vdots&\vdots\\ \frac{1}{\sqrt{n-1}\sqrt{n}}&\frac{1}{\sqrt{n-1}\sqrt{n}}&\frac{1}{\sqrt{n-1}\sqrt{n}}&\cdots&\frac{1}{\sqrt{n-1}\sqrt{n}}&\frac{-(n-1)}{\sqrt{n-1}\sqrt{n}}\\ \frac{1}{\sqrt{n}}&\frac{1}{\sqrt{n}}&\frac{1}{\sqrt{n}}&\cdots&\frac{1}{\sqrt{n}}&\frac{1}{\sqrt{n}} \end{bmatrix}

η=Cξ=(η1,η2,,ηn)T\vec{\eta}=C\vec{\xi}=(\eta_1,\eta_2,\cdots,\eta_n)^T, 那么 ηi\eta_i 相互独立, 并且 ηn=nξˉ\eta_n=\sqrt{n}\bar{\xi}.
由于 CC 正交变换保持范数, η=ξ=k=1nξk2=k=1nηk2||\vec{\eta}||=||\vec{\xi}||=\sum_{k=1}^n\xi_k^2=\sum_{k=1}^n\eta_k^2, 那么

nSn2=k=1n(ξkξˉ)2=k=1nξk2nξˉ2=k=1nηk2ηn2=k=1n1ηk2nS_n^2=\sum_{k=1}^n(\xi_k-\bar{\xi})^2=\sum_{k=1}^n\xi_k^2-n\bar{\xi}^2=\sum_{k=1}^n\eta_k^2-\eta_n^2=\sum_{k=1}^{n-1}\eta_k^2

ηk\eta_k 相互独立, ξˉ=1nηn\bar{\xi}=\frac{1}{\sqrt{n}}\eta_nSn2=1nk=1n1ηk2S_n^2=\frac{1}{n}\sum_{k=1}^{n-1}\eta_k^2 独立. (2)(3) 根据上述易证, 略.

Kolmogorov’s Maximal Ineq

定理 设在 (Ω,F,P)(\Omega,\mathcal{F},\mathcal{P}){ξn}\{\xi_n\} 独立且 D(ξn)<+D(\xi_n)<+\infty, 那么

P{ω:max1kn{SkE(Sk)}ϵ}D(Sn)ϵ2\mathcal{P} \left\{ \omega:\max_{1\leq k\leq n}\{|S_k-E(S_k)|\}\geq \epsilon \right\}\leq\frac{D(S_n)}{\epsilon^2}

进一步地, 若 ξnc|\xi_n|\leq c, 则

1(ϵ+2c)2D(Sn)P{ω:max1kn{SkE(Sk)}ϵ}D(Sn)ϵ21-\frac{(\epsilon+2c)^2}{D(S_n)}\leq\mathcal{P} \left\{ \omega:\max_{1\leq k\leq n}\{|S_k-E(S_k)|\}\geq \epsilon \right\}\leq\frac{D(S_n)}{\epsilon^2}

此即Kolmogorov’s Maximal Ineq. 当 n=1n=1 时, 即 Chebyshov’s Ineq

P{ω:ξE(ξ)ϵ}D(ξ)ϵ2\mathcal{P} \left\{ \omega:|\xi-E(\xi)|\geq \epsilon \right\}\leq\frac{D(\xi)}{\epsilon^2}

证明
Chebyshov’s Ineq 的证明:

P(ξE(ξ)ϵ)=ξE(ξ)ϵ11dPξE(ξ)ϵ1ξE(ξ)2ϵ2dPΩξE(ξ)2ϵ2dP=1ϵ2EξE(ξ)2=D(ξ)ϵ2\mathcal{P}(|\xi-E(\xi)|\geq\epsilon)=\int_{\frac{|\xi-E(\xi)|}{\epsilon}\geq1}1d\mathcal{P}\leq\int_{\frac{|\xi-E(\xi)|}{\epsilon}\geq1}\frac{|\xi-E(\xi)|^2}{\epsilon^2}d\mathcal{P}\leq\int_\Omega\frac{|\xi-E(\xi)|^2}{\epsilon^2}d\mathcal{P}=\frac{1}{\epsilon^2}E|\xi-E(\xi)|^2=\frac{D(\xi)}{\epsilon^2}

Kolmogorov’s Maximal Ineq 的证明:
对于右侧, WLOG, 设 E(ξn)=0E(\xi_n)=0. 记 Bk={ω:Skϵ}B_k=\{\omega:|S_k|\geq\epsilon\}, 那么即证

P(B)=P(k=1nBk)D(Sn)ϵ2\mathcal{P}(B)=\mathcal{P}\left(\bigcup_{k=1}^n B_k\right)\leq \frac{D(S_n)}{\epsilon^2}

A1=B1A_1=B_1, Ak=BkBk1cB1cA_k=B_kB_{k-1}^c\cdots B_1^c, 则 B=k=1nAkB=\sum_{k=1}^n A_k, 考虑

P(Ak)AkSk2ϵ2dP=1ϵ2E(Sk2IAk)\mathcal{P}(A_k)\leq\int_{A_k}\frac{S_k^2}{\epsilon^2}d\mathcal{P}=\frac{1}{\epsilon^2}E(S_k^2 I_{A_k})

E((SnSk)SkIAk)=E(SnSk)E(SkIAk)=j=k+1nE(ξj)E(SkIAk)=0E((S_n-S_k)S_kI_{A_k})=E(S_n-S_k)E(S_kI_{A_k})=\sum_{j=k+1}^nE(\xi_j)\cdot E(S_kI_{A_k})=0

从而

E(Sk2IAk)E(Sk2IAk+(SnSk)2IAk)=E((Sk+SnSk)2IAk)=E(Sn2IAk)E(S_k^2I_{A_k})\leq E(S_k^2I_{A_k}+(S_n-S_k)^2I_{A_k})=E((S_k+S_n-S_k)^2I_{A_k})=E(S_n^2I_{A_k})

于是

P(B)1ϵ2E(Sn2k=1nIAk)1ϵ2E(Sn2)=D(Sn)ϵ2\mathcal{P}(B)\leq\frac{1}{\epsilon^2}E\left(S_n^2\sum_{k=1}^n I_{A_k}\right)\leq \frac{1}{\epsilon^2}E(S_n^2)=\frac{D(S_n)}{\epsilon^2}

对于左侧, 设 ξk2c|\xi_k|\leq 2cEξk=0E\xi_k=0, 定义 BkB_k, AkA_k, BB 同上, 由 E((SnSk)SkIAk)=0E((S_n-S_k)S_kI_{A_k})=0,

E(SnIB)k=1nE((SnSk)2IAk)+k=1nE(Sk2IAk)E(S_nI_B)\leq\sum_{k=1}^n E((S_n-S_k)^2I_{A_k})+\sum_{k=1}^n E(S_k^2I_{A_k})

SkIAk=(Sk1+ξk)IAk(ϵ+2c)P(Ak)|S_kI_{A_k}|=|(S_{k-1}+\xi_k)I_{A_k}|\leq(\epsilon+2c)\mathcal{P}(A_k), 我们有

E(SnIB)k=1n(j=k+1nD(ξj)P(Ak))+(ϵ+2c)2k=1nP(Ak)i=1nD(ξj)k=1nP(Ak)+(ϵ+2c)2k=1nP(Ak)=(D(Sn)+(ϵ+2c)2)P(B)\begin{aligned} E(S_nI_B) &\leq\sum_{k=1}^n\left(\sum_{j=k+1}^nD(\xi_j)\cdot\mathcal{P}(A_k)\right)+(\epsilon+2c)^2\sum_{k=1}^n\mathcal{P}(A_k)\\ &\leq \sum_{i=1}^nD(\xi_j)\sum_{k=1}^n\mathcal{P}(A_k)+(\epsilon+2c)^2\sum_{k=1}^n\mathcal{P}(A_k)\\ &=(D(S_n)+(\epsilon+2c)^2)\mathcal{P}(B) \end{aligned}

另一方面,

E(SnIB)=ESn2E(Sn2IBc)ESn2ϵ2P(Bc)=D(Sn)ϵ2+ϵ2P(B)E(S_nI_B)=ES_n^2-E(S_n^2I_{B^c})\geq ES_n^2-\epsilon^2\mathcal{P}(B^c)=D(S_n)-\epsilon^2+\epsilon^2\mathcal{P}(B)

D(Sn)ϵ2+ϵ2P(B)E(SnIB)(D(Sn)+(ϵ+2c)2)P(B)D(S_n)-\epsilon^2+\epsilon^2\mathcal{P}(B)\leq E(S_nI_B)\leq(D(S_n)+(\epsilon+2c)^2)\mathcal{P}(B)

即得

1(ϵ+2c)2D(Sn)P{ω:max1kn{SkE(Sk)}ϵ}1-\frac{(\epsilon+2c)^2}{D(S_n)}\leq\mathcal{P} \left\{ \omega:\max_{1\leq k\leq n}\{|S_k-E(S_k)|\}\geq \epsilon \right\}

Borel - Cantelli’s Lemma

定理(Ω,F,P)(\Omega,\mathcal{F},\mathcal{P}) 上, 设 AnF,n1A_n\in\mathcal{F},n\geq 1, 那么

(1) 若 n=1P(An)<+\sum_{n=1}^\infty \mathcal{P}(A_n)<+\infty, 那么 P(limnAn)=0\mathcal{P}(\varlimsup_n A_n)=0;
(2) 若 AnA_n 独立, 那么 n=1P(An)=+\sum_{n=1}^\infty \mathcal{P}(A_n)=+\infty 当且仅当 P(limnAn)=1\mathcal{P}(\varlimsup_n A_n)=1.

证明
(1)

P(limnAn)=P(k=1n=kAn)=limk+P(n=kAn)limk+n=kP(An)=0\mathcal{P}\left(\varlimsup_n A_n\right)=\mathcal{P}\left(\bigcap_{k=1}^\infty \bigcup_{n=k}^\infty A_n\right)=\lim_{k\to+\infty}\mathcal{P}\left(\bigcup_{n=k}^\infty A_n\right)\leq\lim_{k\to+\infty}\sum_{n=k}^\infty\mathcal{P}(A_n)=0

(2)
\Leftarrow”: 若 n=1P(An)<+\sum_{n=1}^\infty \mathcal{P}(A_n)<+\infty, 那么 P(limnAn)=0\mathcal{P}(\lim_n A_n)=0;
\Rightarrow”: 等价于

0=P(limnAnc)=P(k=1n=kAnc)=limkP(n=kAnc)=limkn=kP(Anc)=limkexp{n=klog(1P(An))}limkexp{c1k=1P(Ak)}=0\begin{aligned} 0=\mathcal{P}\left(\varliminf_n A_n^c\right)=\mathcal{P}\left(\bigcup_{k=1}^\infty\bigcap_{n=k}^\infty A_n^c\right)&=\lim_{k\to\infty}\mathcal{P}\left(\bigcap_{n=k}^\infty A_n^c\right)\\ &=\lim_{k\to\infty}\prod_{n=k}^\infty \mathcal{P}(A_n^c)\\ &=\lim_{k\to\infty}\exp\left\{\sum_{n=k}^\infty\log(1-\mathcal{P}(A_n))\right\}\\ &\leq \lim_{k\to\infty}\exp\left\{-c_1\sum_{k=1}^\infty\mathcal{P}(A_k)\right\}=0 \end{aligned}

SLLN

Thm3, Kolmogorov SLLN{ξn}\{\xi_n\} 独立, 满足

n=11n2D(ξn)<+\sum_{n=1}^\infty \frac{1}{n^2}D(\xi_n)<+\infty

那么

1n(SnESn)a.s.0\frac{1}{n}(S_n-ES_n)\overset{a.s.}{\to}0

即满足 SLLN.

Thm4{ξn}\{\xi_n\} 独立同分布, 满足 Eξ1<+E|\xi_1|<+\infty, 那么 {ξn}\{\xi_n\} 满足 SLLN, 即,

E(ξ1Sn)=Snna.s.a=Eξ1E(\xi_1|S_n)=\frac{S_n}{n}\overset{a.s.}{\to}a=E\xi_1

Eξ1=+E|\xi_1|=+\infty, 则

limnSnn=+,a.s.\varlimsup_{n\to\infty}\frac{|S_n|}{n}=+\infty,\quad a.s.

证明
Thm3, Kolmogorov SLLN 的证明:
我们先证明, 若 {ξn}\{\xi_n\} 独立且 Eξn2<+,n1E\xi_n^2<+\infty,n\geq 1, 那么如果 n=1D(ξn)<+\sum_{n=1}^\infty D(\xi_n)<+\infty, 则 k=1ξkEξk\sum_{k=1}^\infty|\xi_k-E\xi_k| a.s. 收敛 (Thm2).
WLOG, 设 Eξk=0E\xi_k=0, 那么

P(ω:maxM+1mNSmSMϵ)Kolmogorov1ϵ2k=M+1ND(ξk)\mathcal{P}\left(\omega:\max_{M+1\leq m\leq N}|S_m-S_M|\geq\epsilon\right)\overset{Kolmogorov}{\leq}\frac{1}{\epsilon^2}\sum_{k=M+1}^ND(\xi_k)

NN\to\infty, 我们有

P(ω:maxmM+1SmSMϵ)1ϵ2k=M+1D(ξk),m1\mathcal{P}\left(\omega:\max_{m\geq M+1}|S_m-S_M|\geq\epsilon\right)\leq\frac{1}{\epsilon^2}\sum_{k=M+1}^\infty D(\xi_k),\quad \forall m\geq 1

定义 WM=maxm,nMSmSnW_M=\max_{m,n\geq M}|S_m-S_n|, 由于 SmSnSmSM+SnSM|S_m-S_n|\leq|S_m-S_M|+|S_n-S_M|, 我们有

P(ω:WM2ϵ)2P(ω:maxmM+1SmSMε)2ϵ2k=M+1D(ξk)\mathcal{P}(\omega:W_M\geq2\epsilon)\leq2\mathcal{P}\left(\omega:\max_{m\geq M+1}|S_m-S_M|\geq\varepsilon\right)\leq\frac{2}{\epsilon^2}\sum_{k=M+1}^\infty D(\xi_k)

于是

P(M=1{ω:WM2ϵ})=limMP(ω:WM2ϵ)=0\mathcal{P}\left(\bigcap_{M=1}^\infty \{\omega:W_M\geq2\epsilon\}\right)=\lim_M\mathcal{P}(\omega:W_M\geq2\epsilon)=0

Ω~=(M=1{ω:WM2ϵ})c=M=1{ω:WM<2ϵ}\tilde{\Omega}=(\bigcap_{M=1}^\infty\{\omega:W_M\geq2\epsilon\})^c=\bigcup_{M=1}^\infty\{\omega:W_M<2\epsilon\}, 有 P(Ω~)=1\mathcal{P}(\tilde{\Omega})=1, 即 ωΩ~\forall \omega\in\tilde{\Omega}, M01\exists M_0\geq1, s.t. m,n>M0\forall m,n>M_0, 有 Sn(ω)Sm(ω)<2ϵ|S_n(\omega)-S_m(\omega)|<2\epsilon, 由 Cauchy 判别法, limnSn(ω)\lim_n S_n(\omega)Ω~\tilde{\Omega} 存在且唯一, 故结论成立.

根据上述定理, 由于 n=1D(ξnn)=n=11n2D(ξn)<+\sum_{n=1}^\infty D(\frac{\xi_n}{n})=\sum_{n=1}^\infty \frac{1}{n^2}D(\xi_n)<+\infty, 那么 n=1(ξnEξnn)\sum_{n=1}^\infty(\frac{\xi_n-E\xi_n}{n}) a.s. 收敛, 也即 1n(SnESn)a.s.0\frac{1}{n}(S_n-ES_n)\overset{a.s.}{\to}0.

Thm 4 的证明:
ηn=ξnI[n,n]\eta_n=\xi_n I_{[-n,n]}, 那么 ξnn|\xi_n|\leq n, 记 Sn=k=1nξkS_n=\sum_{k=1}^n \xi_k, Sn=k=1nηkS_n^*=\sum_{k=1}^n\eta_k, 那么

1nSn=1n(SnESn)+1n(SnSn)+1nESn\frac{1}{n}S_n=\frac{1}{n}(S_n^*-ES_n^*)+\frac{1}{n}(S_n-S_n^*)+\frac{1}{n}ES_n^*

(1) 证明 n=1D(ηn)n2<+\sum_{n=1}^\infty \frac{D(\eta_n)}{n^2}<+\infty, 那么由 Thm 3, 1n(SnESn)a.s.0\frac{1}{n}(S_n^*-ES_n^*)\overset{a.s.}{\to}0. 考虑

n=1D(ηn)n2n=1Eηn2n2=n=11n2Rx2I[n,n](x)dFξ1(x)=n=11n2j=1nj1<x<jx2dFξ1(x)=j=1(j1<x<jx2dFξ1(x))n=j1n2cj=11jj1<x<jx2dFξ1(x)cj=1j1<x<jxdFξ1(x)=cRxdFξ1(x)=cEξ1<+\begin{aligned} \sum_{n=1}^\infty \frac{D(\eta_n)}{n^2}\leq\sum_{n=1}^\infty\frac{E\eta_n^2}{n^2}&=\sum_{n=1}^\infty\frac{1}{n^2}\int_{\mathbb{R}}x^2I_{[-n,n]}(x)d\mathcal{F}_{\xi_1}(x)\\ &=\sum_{n=1}^\infty\frac{1}{n^2}\sum_{j=1}^n \int_{j-1<|x|<j}x^2d\mathcal{F}_{\xi_1}(x)\\ &=\sum_{j=1}^\infty\left( \int_{j-1<|x|<j}x^2d\mathcal{F}_{\xi_1}(x)\right)\sum_{n=j}^\infty\frac{1}{n^2}\\ &\leq c\sum_{j=1}^\infty \frac{1}{j}\int_{j-1<|x|<j}x^2d\mathcal{F}_{\xi_1}(x)\\ &\leq c\sum_{j=1}^\infty \int_{j-1<|x|<j}|x|d\mathcal{F}_{\xi_1}(x)\\ &=c\int_{\mathbb{R}} |x|d\mathcal{F}_{\xi_1}(x)=cE|\xi_1|<+\infty \end{aligned}

(2) 证明 n=1P{ξnηn}<+\sum_{n=1}^\infty\mathcal{P}\{\xi_n\neq\eta_n\}<+\infty, 于是 n=1(ξnηn)\sum_{n=1}^\infty (\xi_n-\eta_n) a.s. 收敛, 从而 ξnηna.s.0\xi_n-\eta_n\overset{a.s.}{\to}0, 从而由 Kronecker’s Lemma (i), 1n(SnSn)a.s.0\frac{1}{n}(S_n-S_n^*)\overset{a.s.}{\to}0. 实际上

n=1P(ξnηn)=n=1P(ξn>n)Eξn=Eξ1<+\sum_{n=1}^\infty\mathcal{P}(\xi_n\neq\eta_n)=\sum_{n=1}^\infty \mathcal{P}(|\xi_n|>n)\leq E|\xi_n|=E|\xi_1|<+\infty

(3) 证明 Eηna.s.aE\eta_n\overset{a.s.}{\to} a, 从而由 Kronecker’s Lemma (i), 1nESn=1nk=1nEηka.s.a\frac{1}{n}ES_n^*=\frac{1}{n}\sum_{k=1}^nE\eta_k\overset{a.s.}{\to}a. 实际上

Eηn=ΩξnI[n,n](ξn)dP=RxI[n,n](x)dFξ1(x)E\eta_n=\int_\Omega\xi_nI_{[-n,n]}(\xi_n)d\mathcal{P}=\int_{\mathbb{R}}xI_{[-n,n]}(x)d\mathcal{F}_{\xi_1}(x)

由 DCT,

limnEξn=RxdFξ1(x)=Eξ1=a\lim_{n\to\infty}E\xi_n=\int_{\mathbb{R}}xd\mathcal{F}_{\xi_1}(x)=E\xi_1=a

结合(1)(2)(3), 那么 1nSn0\frac{1}{n}S_n\to 0 a.s. 成立.

Eξ1=+E|\xi_1|=+\infty, 那么 A>0\forall A>0, E(ξ1A)=+E(\frac{|\xi_1|}{A})=+\infty, 从而

n=1P(ξn>An)=+\sum_{n=1}^\infty\mathcal{P}(|\xi_n|>An)=+\infty

于是

P(limn{ξn>An})=1,P(limn{Sn>An2})=1\mathcal{P}(\varlimsup_n \{|\xi_n|>An\})=1,\quad \mathcal{P}(\varlimsup_n \{|S_n|>\frac{An}{2}\})=1

从而对任意 AA, 存在 Z(A)Z(A) s.t. P(Z(A))=0\mathcal{P}(Z(A))=0, 且对于 ωΩZ(A)\omega\in\Omega\setminus Z(A), 有

limnSn(ω)nA2\varlimsup_n \frac{S_n(\omega)}{n}\geq\frac{A}{2}

Z=m=1Z(m)Z=\bigcup_{m=1}^\infty Z(m), 那么 P(Z)=0\mathcal{P}(Z)=0, 于是对于任意 ωΩZ\omega\in\Omega\setminus Z, A\forall A,

limnSn(ω)nA2\varlimsup_n \frac{S_n(\omega)}{n}\geq\frac{A}{2}

于是

limnSnn=+,a.s.\varlimsup_{n\to\infty}\frac{|S_n|}{n}=+\infty,\quad a.s.

收敛性

弱收敛

定理 XndXfn(t)E(eitXn)wf(t)E(eitX),tRX_n \xrightarrow{d} X \Leftrightarrow f_n(t) \triangleq E(e^{itX_n}) \xrightarrow{w} f(t) \triangleq E(e^{itX}), \forall t \in \mathbb{R}.

证明 充分性: 显然, 基于 Second Helly’s Thm, 由于 XndXX_n \xrightarrow{d} X \Leftrightarrow 对任意的有界连续函数 g(x)g(x), 有 E(g(Xn))=E(g(X))E(g(X_n)) = E(g(X)), 而 eitx1|e^{itx}| \leq 1 保证了结论成立.

必要性:
1)证明 F^\hat{F} 是一个分布函数.
XnX_n 的分布函数为 FnF_n, XX 的分布函数为 FF. 由 First Helly’s Thm, {Xn}\{X_n\} 存在子序列 {Xnk}\{X_{nk}\} 满足 FnkwF^,k+F_{nk} \xrightarrow{w} \hat{F}, k \rightarrow +\infty, 下证 F^\hat{F} 是一个分布函数. 由收敛性知 F^\hat{F} 满足右连续、单调递增条件, 只需证明 F^()=0,F^(+)=1\hat{F}(-\infty) = 0, \hat{F}(+\infty) = 1.
若存在 a=F^(+)F^()(0,1)a = \hat{F}(+\infty) - \hat{F}(-\infty) \in (0,1), 由于 f(0)=1,ff(0) = 1, f 一致连续, 则对任意 ε>0\varepsilon > 0, 存在 r=r(ε)r = r(\varepsilon) 使得

12rrrf(t)dt>112ε>a+12ε\frac{1}{2r} \int_{-r}^{r} f(t) dt > 1 - \frac{1}{2}\varepsilon > a + \frac{1}{2}\varepsilon

bb 满足 Fnk(b)Fnk(b)<a+14εF_{nk}(b) - F_{nk}(-b) < a + \frac{1}{4}\varepsilon1br<ε4\frac{1}{br} < \frac{\varepsilon}{4}, 则有:

12rrrfnk(t)dt=12rrrdtReitxdFnk(x)=12r(xbdFnk(x)rreitxdt+x>bdFnk(x)rreitxdt)xbdFnk(x)+12rx>b2sinrxxdFnk(x)<xbdFnk(x)+1bra+12ε\begin{aligned} \frac{1}{2r} \int_{-r}^{r} f_{nk}(t) dt &= \frac{1}{2r} \int_{-r}^r dt \int_{\mathbb{R}} e^{itx} d\mathcal{F}_{nk}(x) \\ &= \frac{1}{2r} \left( \int_{|x| \leq b} d\mathcal{F}_{nk}(x) \int_{-r}^{r} e^{itx} dt + \int_{|x| > b} d\mathcal{F}_{nk}(x) \int_{-r}^{r} e^{itx} dt \right)\\ &\leq \int_{|x| \leq b} d\mathcal{F}_{nk}(x) + \frac{1}{2r} \int_{|x| > b} \left| \frac{2 \sin rx}{x} \right| d\mathcal{F}_{nk}(x) \\ &< \int_{|x| \leq b} d\mathcal{F}_{nk}(x) + \frac{1}{br} \leq a + \frac{1}{2}\varepsilon \end{aligned}

由控制收敛定理, 取 kk \rightarrow \infty 则有

12rrrf(t)dta+12ε\frac{1}{2r} \int_{-r}^{r} f(t) dt \leq a + \frac{1}{2}\varepsilon

这与 rr 的取值相矛盾. 因此 F^\hat{F} 是一个分布函数.

2)证明 F=F^F = \hat{F}.
由 Second Helly’s Thm 可知 FnkF_{nk} 对应的特征函数在 k+k \rightarrow +\infty 时收敛到 eitxdF^(x)\int e^{itx} d\mathcal{\hat{F}}(x). 又因为 fnk(t)f_{nk}(t) 逐点收敛到 f(t)=eitxdF(x)f(t) = \int e^{itx} d\mathcal{F}(x), 由特征函数的唯一性可知 F=F^F = \hat{F}.

3)证明 FnwFF_n \xrightarrow{w} F.
若不然, 存在 FF 的某一连续点 x0x_0 满足 Fn(x0)F_n(x_0) 不收敛到 F(x0)F(x_0). 取其收敛子列 FmkF_{mk} 使得 limm+Fmk(x0)=F(x0)\lim_{m \rightarrow +\infty} F_{mk}(x_0) = F^*(x_0), 由 First Helly’s Thm 和上一步的结论可知, {Fmk}\{F_{mk}\} 存在子序列 {Fmkj}\{F_{mkj}\} 满足 FmkjwF,j+F_{mkj} \xrightarrow{w} F, j \rightarrow +\infty. 于是 F(x0)=limj+Fmkj=limk+Fmk=F(x0)F(x_0) = \lim_{j \rightarrow +\infty} F_{mkj} = \lim_{k \rightarrow +\infty} F_{mk} = F^*(x_0), 矛盾.

综合可知结论成立.

定理ξndξ,ηndaR\xi_n \xrightarrow{d} \xi, \eta_n \xrightarrow{d} a \in \mathbb{R}. 证明: ξn+ηndξ+a\xi_n + \eta_n \xrightarrow{d} \xi + a.

证明 我们先证明 XnPaXndaX_n \xrightarrow{\mathcal{P}} a \Leftrightarrow X_n \xrightarrow{d} a, aa 为常数. 必要性已证, 只需证充分性,
我们有

P(Xna>ε)=P(Xn>a+ε)+P(Xn<aε)=1+P(Xn<aε)P(Xna+ε)1+P(Xn<aε)P(Xn<a+ε)\begin{aligned} \mathcal{P}(|X_n - a| > \varepsilon) &= \mathcal{P}(X_n > a + \varepsilon) + \mathcal{P}(X_n < a - \varepsilon) \\ &= 1 + \mathcal{P}(X_n < a - \varepsilon) - \mathcal{P}(X_n \leq a + \varepsilon) \\ &\leq 1 + \mathcal{P}(X_n < a - \varepsilon) - \mathcal{P}(X_n < a + \varepsilon) \end{aligned}

nn \to \infty, 由依分布收敛的定义, 右式趋于 1+Fa(aε)Fa(a+ε)=01 + F_a(a - \varepsilon) - F_a(a + \varepsilon) = 0. 于是有 limnP(Xna>ε)=0,ε>0\lim_{n \to \infty} \mathcal{P}(|X_n - a| > \varepsilon) = 0, \forall \varepsilon > 0, 即 XnPaX_n \xrightarrow{\mathcal{P}} a.

回到本题, ηnPa\eta_n \xrightarrow{\mathcal{P}} a. 于是

P(ξn+ηn<x)P(ξn+ηn<x,ηna<ε)+P(ηna>ε)\mathcal{P}(\xi_n + \eta_n < x) \leq \mathcal{P}(\xi_n + \eta_n < x, |\eta_n - a| < \varepsilon) + \mathcal{P}(|\eta_n - a| > \varepsilon)

对事件 {ξn+ηn<x,ηna<ε}\{\xi_n + \eta_n < x, |\eta_n - a| < \varepsilon\}, 有

{ξn+ηn<x,ηna<ε}{ξn<xa+ε}\{\xi_n + \eta_n < x, |\eta_n - a| < \varepsilon\} \subset \{\xi_n < x - a + \varepsilon\}

于是取上极限可得

limnP(ξn+ηn<x)limnP(ξn<xa+ε)=P(ξ<xa+ε)\varlimsup_n \mathcal{P}(\xi_n + \eta_n < x) \leq \lim_n \mathcal{P}(\xi_n < x - a + \varepsilon) = \mathcal{P}(\xi < x - a + \varepsilon)

对于下界, 我们有关系

{ξnxaε}{ηna>ε}{ξn+ηn<x}\{\xi_n \leq x - a - \varepsilon\} \subset \{|\eta_n - a| > \varepsilon\} \cup \{\xi_n + \eta_n < x\}

因此

P(ξn+ηn<x)P(ξn<xaε)P(ηna>ε)\mathcal{P}(\xi_n + \eta_n < x) \geq \mathcal{P}(\xi_n < x - a - \varepsilon) - \mathcal{P}(|\eta_n - a| > \varepsilon)

取下极限可得

limnP(ξn+ηn<x)limnP(ξn<xaε)=P(ξ<xaε)\varliminf_n \mathcal{P}(\xi_n + \eta_n < x) \geq \lim_n \mathcal{P}(\xi_n < x - a - \varepsilon) = \mathcal{P}(\xi < x - a - \varepsilon)

xCFξ+ax \in C_{F_{\xi+a}}, 于是 xaCFξx - a \in C_{F_\xi}, 令上述两个式子中 ε0\varepsilon \to 0, 即得

limnP(ξn+ηn<x)=P(ξ+a<x)\lim_n \mathcal{P}(\xi_n + \eta_n < x) = \mathcal{P}(\xi + a < x)

也即 ξn+ηndξ+a\xi_n + \eta_n \xrightarrow{d} \xi + a.

定理ξndξ\xi_n \xrightarrow{d} \xi, ηnd0\eta_n \xrightarrow{d} 0. 证明: ξnηnd0\xi_n \eta_n \xrightarrow{d} 0.

证明 首先有 ηnP0\eta_n \xrightarrow{\mathcal{P}} 0, 要证 ξnηnd0\xi_n \eta_n \xrightarrow{d} 0, 只需证 ξnηnP0\xi_n \eta_n \xrightarrow{\mathcal{P}} 0. 每个 ξn\xi_n 以及 ξ\xi 的不连续点是可列的, 因此这些不连续点集的并也是可列的. 因此对固定的 ϵ>0\epsilon > 0, 可取充分大的 AA, ACFξ(n=1CFξn)-A \in C_{F_\xi} \cup (\bigcup_{n=1}^{\infty} C_{F_{\xi_n}}), 且 P(ξ>A)<ϵ\mathcal{P}(|\xi| > A) < \epsilon. 于是有如下估计:

P(ξnηn>δ)P(ξn>A)+P(ηnδA)=1Fξn(A+0)+Fξn(A)+P(ηnδA)=1Fξn(A)+Fξn(A)+P(ηnδA)n1Fξ(A)+Fξ(A)=P(ξ>A)<ϵ\begin{aligned} \mathcal{P}(|\xi_n \eta_n| > \delta) &\leq \mathcal{P}(|\xi_n| > A) + \mathcal{P}\left(\left|\eta_n\right| \geq \frac{\delta}{A}\right)\\ &= 1 - F_{\xi_n}(A+0) + F_{\xi_n}(-A) + \mathcal{P}\left(\left|\eta_n\right| \geq \frac{\delta}{A}\right)\\ &= 1 - F_{\xi_n}(A) + F_{\xi_n}(-A) + \mathcal{P}\left(\left|\eta_n\right| \geq \frac{\delta}{A}\right)\\ &\stackrel{n \to \infty}{\longrightarrow} 1 - F_\xi(A) + F_\xi(-A) = \mathcal{P}(|\xi| > A) < \epsilon \end{aligned}

ϵ0\epsilon \to 0 即得 limnP(ξnηn>δ)=0\lim_{n \to \infty} \mathcal{P}(|\xi_n \eta_n| > \delta) = 0, 综上命题得证.

收敛性相互推导

定理 ξna.s.ξ(1)ξnPξ(2)ξndξ\xi_n\overset{a.s.}{\to}\xi\overset{(1)}{\Rightarrow}\xi_n\overset{\mathcal{P}}{\to}\xi\overset{(2)}{\Rightarrow}\xi_n\overset{d}{\to}\xi, ξnLpξ(3)ξnPξ\xi_n\overset{L^p}{\to}\xi\overset{(3)}{\Rightarrow}\xi_n\overset{\mathcal{P}}{\to}\xi.

证明
对于(1)(3), 由

P(ξnξϵ)Eξnξpϵp\mathcal{P}(|\xi_n-\xi|\geq\epsilon)\leq\frac{E|\xi_n-\xi|^p}{\epsilon^p}

即知成立.
对于(2), xCFξ\forall x\in C_{F_\xi}, limnFξn(x)=Fξ(x)\lim_nF_{\xi_n}(x)=F_{\xi}(x), F(x0)=limyxFξ(y)Fξ(x)=limzxFξ(z)F(x-0)=\lim_{y\uparrow x}F_\xi(y)-F_\xi(x)=\lim_{z\downarrow x}F_\xi(z), 我们希望证明

Fξ(y)limnFξn(x)limnFξn(x)Fξ(z),y<x<zF_\xi(y)\leq\varliminf_nF_{\xi_n}(x)\leq\varlimsup_nF_{\xi_n}(x)\leq F_\xi(z),\quad\forall y<x<z

这样令 yxy\uparrow xzxz\downarrow x, 就有 limnFξn(x)=F(x)\lim_nF_{\xi_n}(x)=F(x). 考虑

Fξ(y)=P(ξ<y)=P(ξ<y,ξn<x)+P(ξ<y,ξnx)Fξn(x)+P(ξnξxy)limnFξn(x)+limnP(ξnξxy)limnFξn(x)\begin{aligned} F_\xi(y)=\mathcal{P}(\xi<y)&=\mathcal{P}(\xi<y,\xi_n<x)+\mathcal{P}(\xi<y,\xi_n\geq x)\\ &\leq F_{\xi_n}(x)+\mathcal{P}(|\xi_n-\xi|\geq x-y)\\ &\leq \varliminf_n F_{\xi_n}(x)+\varlimsup_n\mathcal{P}(|\xi_n-\xi|\geq x-y)\\ &\leq \varliminf_n F_{\xi_n}(x) \end{aligned}

另一方面,

Fξn(x)=P(ξnx)P(ξ<z)+P(ξnξzx)F_{\xi_n}(x)=\mathcal{P}(\xi_n\leq x)\leq\mathcal{P}(\xi<z)+\mathcal{P}(|\xi_n-\xi|\geq|z-x|)

于是

limnFξn(x)Fξ(z)\varlimsup_nF_{\xi_n}(x)\leq F_\xi(z)

这就证明了结论.

收敛性中的反例

依概率收敛不一定 a.s. 收敛:
Ω=(0,1)\Omega=(0,1), F=B(R)\mathcal{F}=\mathcal{B}(\mathbb{R}), dP=dxd\mathcal{P}=dx, 记

ηij={1,ω[j1i,ji)0,otherwise\eta_{ij}=\begin{cases}1,\quad \omega\in\left[\frac{j-1}{i},\frac{j}{i}\right)\\0,\quad\mathrm{otherwise}\end{cases}

ξ1=η11,ξ2=η21,ξ3=η22,\xi_1=\eta_{11},\xi_2=\eta_{21},\xi_3=\eta_{22},\cdots, ξ=0\xi=0, 此时

P(ξn0>ϵ)=P(ω:ω[j1in,jin))=1in0\mathcal{P}(|\xi_n-0|>\epsilon)=\mathcal{P}\left(\omega:\omega\in\left[\frac{j-1}{i_n},\frac{j}{i_n}\right)\right)=\frac{1}{i_n}\to0

依概率收敛, 但是有子列 ξn=1\xi_{n'}=1, 不 a.s. 收敛.

a.s. 收敛不一定 LpL^p 收敛:
Ω=(0,1)\Omega=(0,1), F=B(R)\mathcal{F}=\mathcal{B}(\mathbb{R}), dP=dxd\mathcal{P}=dx, 记

ξn={cn,ω[0,1n)0,otherwise\xi_n=\begin{cases}c_n,\quad \omega\in\left[0,\frac{1}{n}\right)\\0,\quad\mathrm{otherwise}\end{cases}

ξ=0\xi=0, 易知 ξna.s.ξ\xi_n\overset{a.s.}{\to}\xi, 但取 cn=2nc_n=2^n, 此时 Eξnp=2npn+E|\xi_n^p|=\frac{2^{np}}{n}\to+\infty, 故不 LpL^p 收敛.

弱收敛不一定依概率收敛:
{ξn,ξ}\{\xi_n,\xi\} 独立同分布, ξ(111212)\xi\sim\begin{pmatrix}1&-1\\\frac{1}{2}&\frac{1}{2}\end{pmatrix}, 那么 Fξn=FξF_{\xi_n}=F_\xi, 即 ξndξ\xi_n\overset{d}{\to}\xi, 而

P(ξnξ>1)=P(ξ=1,ξn=1)+P(ξ=1,ξn=1)=12>0\mathcal{P}(|\xi_n-\xi|>1)=\mathcal{P}(\xi=1,\xi_n=-1)+\mathcal{P}(\xi=-1,\xi_n=1)=\frac{1}{2}>0

故不依概率收敛.

CLT

定理

Thm 假设 ξn\xi_n 独立, ak=Eξka_k=E\xi_k, σk2=D(ξk)\sigma_k^2=D(\xi_k), Bn2=D(Sn)B_n^2=D(S_n), Sn=k=1nξkS_n=\sum_{k=1}^n \xi_k, ξnk=ξkEξkBn\xi_{nk}=\frac{\xi_k-E\xi_k}{B_n}, 那么 E(ξnk)=0E(\xi_{nk})=0, D(ξnk)=σk2Bn2D(\xi_{nk})=\frac{\sigma_k^2}{B_n^2}, k=1nD(ξk)=1\sum_{k=1}^n D(\xi_k)=1. 记 ζn=SnESnD(Sn)=k=1nξnk\zeta_n=\frac{S_n-ES_n}{\sqrt{D(S_n)}}=\sum_{k=1}^n\xi_{nk}, ζN(0,1)\zeta\sim N(0,1).
对于以下条件
(1) fζn(t)=k=1nfξnk(t)fζ(t)=e12t2f_{\zeta_n}(t)=\prod_{k=1}^nf_{\xi_{nk}}(t)\to f_\zeta(t)=e^{-\frac{1}{2}t^2} (即满足 CLT);
(2) limnmax1jn{σj2Bn2}=0\lim_n\max_{1\leq j\leq n}\{\frac{\sigma_j^2}{B_n^2}\}=0 (Feller condition);
(2’) limnmax1jnP(ω:ξnjτ)=0\lim_n\max_{1\leq j\leq n}\mathcal{P}(\omega:|\xi_{nj}|\geq\tau)=0;
(2’') limnP(ω:max1jnξnjτ)=0\lim_n\mathcal{P}(\omega:\max_{1\leq j\leq n}|\xi_{nj}|\geq\tau)=0;
(3) (Lindeburg condition)

0=limn1Bn2k=1nxEξkBnτ(xEξk)2dFξk(x)=limnk=1nxτx2dFξnk(x)0=\lim_n\frac{1}{B_n^2}\sum_{k=1}^n\int_{\frac{|x-E\xi_k|}{B_n}\geq\tau}(x-E\xi_k)^2d\mathcal{F}_{\xi_k}(x)=\lim_n\sum_{k=1}^n\int_{|x|\geq\tau}x^2d\mathcal{F}_{\xi_{nk}}(x)

那么 (1)+(2)/(2’)/(2’') \Leftrightarrow (3).

证明 我们只证明 “\Leftarrow”.

考虑

P(ξnjε)1ε2D(ξnj)=1ε2σj2Bn2=1ε2Rx2dFξnj(x)=1ε2xτx2dFξnj(x)+1ε2x<τx2dFξnj(x)1ε2xτx2dFξnj(x)+1ε2τ2\begin{aligned} \mathcal{P}(|\xi_{nj}|\geq\varepsilon)\leq\frac{1}{\varepsilon^2}D(\xi_{nj})=\frac{1}{\varepsilon^2}\frac{\sigma_j^2}{B_n^2} &=\frac{1}{\varepsilon^2}\int_{\mathbb{R}}x^2d\mathcal{F}_{\xi_{nj}}(x)\\ &=\frac{1}{\varepsilon^2}\int_{|x|\geq\tau}x^2d\mathcal{F}_{\xi_{nj}}(x)+\frac{1}{\varepsilon^2}\int_{|x|<\tau}x^2d\mathcal{F}_{\xi_{nj}}(x)\\ &\leq \frac{1}{\varepsilon^2}\int_{|x|\geq\tau}x^2d\mathcal{F}_{\xi_{nj}}(x)+\frac{1}{\varepsilon^2}\tau^2 \end{aligned}

对于(2): 考虑

1ε2max1jn(σj2Bn2)1ε2k=1nxτx2dFξnj(x)+1ε2τ2\frac{1}{\varepsilon^2}\max_{1\leq j\leq n}\left(\frac{\sigma_j^2}{B_n^2}\right)\leq\frac{1}{\varepsilon^2}\sum_{k=1}^n \int_{|x|\geq\tau}x^2d\mathcal{F}_{\xi_{nj}}(x)+\frac{1}{\varepsilon^2}\tau^2

nn\to\inftyτ0\tau\to0.

对于(2’): 考虑

max1jnP(ξnjε)k=1nxτx2dFξnj(x)+τ2\max_{1\leq j\leq n}\mathcal{P}(|\xi_{nj}|\geq\varepsilon)\leq\sum_{k=1}^n \int_{|x|\geq\tau}x^2d\mathcal{F}_{\xi_{nj}}(x)+\tau^2

对于(2’'): 由于

P(ξnkε)ξnkεξnk2ε2dP=1ε2xεx2dFξnk(x)\mathcal{P}(|\xi_{nk}|\geq\varepsilon)\leq\int_{|\xi_{nk}|\geq\varepsilon}\frac{|\xi_{nk}|^2}{\varepsilon^2}d\mathcal{P}=\frac{1}{\varepsilon^2}\int_{|x|\geq\varepsilon}x^2d\mathcal{F}_{\xi_{nk}}(x)

D(max1knξnkε)k=1nP(ξnkε)1ε2k=1nxεx2dFξnk(x)0D\left(\max_{1\leq k\leq n}|\xi_{nk}|\geq\varepsilon\right)\leq\sum_{k=1}^n\mathcal{P}(|\xi_{nk}|\geq\varepsilon)\leq\frac{1}{\varepsilon^2}\sum_{k=1}^n\int_{|x|\geq\varepsilon}x^2d\mathcal{F}_{\xi_{nk}}(x)\to0

接下来我们证明

fζn(t)=k=1nfξnk(t)fζ(t)=e12t2=k=1nexp{12σk2Bn2t2}f_{\zeta_n}(t)=\prod_{k=1}^nf_{\xi_{nk}}(t)\to f_\zeta(t)=e^{-\frac{1}{2}t^2}=\prod_{k=1}^n\exp\left\{-\frac{1}{2}\frac{\sigma_k^2}{B_n^2}t^2\right\}

也就是要证明

fζn(t)e12t2=k=1nfξk(t)k=1nexp{12σk2Bn2t2}0|f_{\zeta_n}(t)-e^{-\frac{1}{2}t^2}|=\left|\prod_{k=1}^n f_{\xi_k}(t)-\prod_{k=1}^n\exp\left\{-\frac{1}{2}\frac{\sigma_k^2}{B_n^2}t^2\right\}\right|\to0

由于 Eξnk=0E\xi_{nk}=0, D(ξnk2)=σk2Bn2D(\xi_{nk}^2)=\frac{\sigma_k^2}{B_n^2}, 故 fξnk(t)=112σk2Bn2t2+o(σk2Bn2)f_{\xi_{nk}}(t)=1-\frac{1}{2}\frac{\sigma_k^2}{B_n^2}t^2+o(\frac{\sigma_k^2}{B_n^2}), 于是考虑

fζn(t)e12t2k=1nfξk(t)k=1n(112t2σk2Bn2)+k=1n(112t2σk2Bn2)k=1nexp{12σk2Bn2t2}|f_{\zeta_n}(t)-e^{-\frac{1}{2}t^2}|\leq\left|\prod_{k=1}^n f_{\xi_k}(t)-\prod_{k=1}^n\left(1-\frac{1}{2}t^2\frac{\sigma_k^2}{B_n^2}\right)\right|+\left|\prod_{k=1}^n\left(1-\frac{1}{2}t^2\frac{\sigma_k^2}{B_n^2}\right)-\prod_{k=1}^n\exp\left\{-\frac{1}{2}\frac{\sigma_k^2}{B_n^2}t^2\right\}\right|

首先有三个易证的不等式:

eitxj=0n(itx)jj!min{tx1+n(1+n)!,2txnn!}(A)\left|e^{itx}-\sum_{j=0}^n\frac{(itx)^j}{j!}\right|\leq\min\left\{\frac{|tx|^{1+n}}{(1+n)!},2\frac{|tx|^n}{n!}\right\}\quad(A)

j=1nξkj=1nωkk=1nξkωk,ξk,ωk1(B)\left|\prod_{j=1}^n\xi_k-\prod_{j=1}^n\omega_k\right|\leq\sum_{k=1}^n|\xi_k-\omega_k|,\quad |\xi_k|,|\omega_k|\leq1\quad(B)

ez1zz2,z1(C)|e^z-1-z|\leq|z|^2,\quad|z|\leq1\quad(C)

据此, 第一项

k=1nfξk(t)k=1n(112t2σk2Bn2)(B)k=1nfξnk(t)(112t2σk2Bn2)=k=1nE(eitξnk1itξnk12t2ξnk2)(A)k=1nE(min{tξnk2,tξnk3})k=1nxτtx2dFξnk(x)+k=1nx<τtx3dFξnk(x)t2k=1nxτx2dFξnk(x)+t3τk=1nRx2dFξnk(x)\begin{aligned} \left|\prod_{k=1}^n f_{\xi_k}(t)-\prod_{k=1}^n\left(1-\frac{1}{2}t^2\frac{\sigma_k^2}{B_n^2}\right)\right| &\overset{(B)}{\leq}\sum_{k=1}^n\left|f_{\xi_{nk}}(t)-\left(1-\frac{1}{2}t^2\frac{\sigma_k^2}{B_n^2}\right)\right|\\ &=\sum_{k=1}^n\left|E\left(e^{it\xi_{nk}}-1-it\xi_{nk}-\frac{1}{2}t^2\xi_{nk}^2\right)\right|\\ &\overset{(A)}{\leq}\sum_{k=1}^nE\left(\min\left\{|t\xi_{nk}|^2,|t\xi_{nk}|^3\right\}\right)\\ &\leq \sum_{k=1}^n\int_{|x|\geq\tau}|tx|^2d\mathcal{F}_{\xi_{nk}}(x)+\sum_{k=1}^n\int_{|x|<\tau}|tx|^3d\mathcal{F}_{\xi_{nk}}(x)\\ &\leq t^2\sum_{k=1}^n\int_{|x|\geq\tau}x^2d\mathcal{F}_{\xi_{nk}}(x)+|t|^3\tau\sum_{k=1}^n\int_{\mathbb{R}}x^2d\mathcal{F}_{\xi_{nk}}(x) \end{aligned}

nn\to\inftyτ0\tau\to0, 即知其趋于 0.\
对于第二项,

k=1n(112t2σk2Bn2)k=1nexp{12σk2Bn2t2}k=1nexp{12σk2Bn2t2}(112t2σk2Bn2)(C)k=1nt22σk2Bn214t4max{σk2Bn2}k=1nσk2Bn2=14max1kn{σk2Bn2}0,n\begin{aligned} \left|\prod_{k=1}^n\left(1-\frac{1}{2}t^2\frac{\sigma_k^2}{B_n^2}\right)-\prod_{k=1}^n\exp\left\{-\frac{1}{2}\frac{\sigma_k^2}{B_n^2}t^2\right\}\right| &\leq \sum_{k=1}^n\left|\exp\left\{-\frac{1}{2}\frac{\sigma_k^2}{B_n^2}t^2\right\}-\left(1-\frac{1}{2}t^2\frac{\sigma_k^2}{B_n^2}\right)\right|\\ &\overset{(C)}{\leq}\sum_{k=1}^n\left|-\frac{t^2}{2}\frac{\sigma_k^2}{B_n^2}\right|\\ &\leq \frac{1}{4}t^4\max\left\{\frac{\sigma_k^2}{B_n^2}\right\}\sum_{k=1}^n\frac{\sigma_k^2}{B_n^2}\\ &=\frac{1}{4}\max_{1\leq k\leq n}\left\{\frac{\sigma_k^2}{B_n^2}\right\}\to0,\quad n\to\infty \end{aligned}

从而结论成立.

题目

{ξn}\{\xi_n\} 独立同分布, Eξ1=0E\xi_1=0, D(ξ1)=1D(\xi_1)=1, 设 {νn}\{\nu_n\} 是取值为正整数的随机变量且

νnnPc\frac{\nu_n}{n}\overset{\mathcal{P}}{\to}c

其中 c(0,+)c\in(0,+\infty) 为常数.
那么

SνnνndζN(0,1)\frac{S_{\nu_n}}{\sqrt{\nu_n}}\overset{d}{\to}\zeta\sim N(0,1)

证明 考虑

Sνnνn=(S[cn][cn]+SνnS[cn][cn])[cn]νn\frac{S_{\nu_n}}{\sqrt{\nu_n}}=\left(\frac{S_{[cn]}}{\sqrt{[cn]}}+\frac{S_{\nu_n}-S_{[cn]}}{\sqrt{[cn]}}\right)\sqrt{\frac{[cn]}{\nu_n}}

由题设 [cn]νnP1\sqrt{\frac{[cn]}{\nu_n}}\overset{\mathcal{P}}{\to}1, 而由定理 S[cn][cn]dζN(0,1)\frac{S_{[cn]}}{\sqrt{[cn]}}\overset{d}{\to}\zeta\sim N(0,1),
因此只需证明

SνnS[cn][cn]P0\frac{S_{\nu_n}-S_{[cn]}}{\sqrt{[cn]}}\overset{\mathcal{P}}{\to}0

对于给定 ϵ(0,1)\epsilon\in(0,1), 记 an=((1ϵ3)[cn])a_n=((1-\epsilon^3) [cn] ), bn=((1+ϵ3)[cn])1b_n=((1+\epsilon^3) [cn] )-1, Λ={ω:anνn(ω)bn}\Lambda=\{\omega:a_n\leq\nu_n(\omega)\leq b_n\}, 由题设, n0(ϵ)\exists n_0(\epsilon), 当 nn0(ϵ)n\geq n_0(\epsilon) 时, P(Λ)1ϵ\mathcal{P}(\Lambda)\geq 1-\epsilon.
ωΛ\omega\in\Lambda, 那么 Sνn(ω)(ω)S_{\nu_n(\omega)}(\omega){Sj,anjbn}\{S_j,a_n\leq j\leq b_n\} 其中之一, 对于 [cn]<jbn[cn]<j\leq b_n, 有

SjS[cn]=ξ[cn]+1+ξ[cn]+2++ξjS_j-S_{[cn]}=\xi_{[cn]+1}+\xi_{[cn]+2}+\cdots+\xi_j

由 Kolmogorov Ineq,

P(max[cn]jbnSjS[cn]>ϵcn)σ2(SbnS[cn])ϵ2cnϵ3[cn]ϵ2cnϵ\mathcal{P}\left(\max_{[cn]\leq j\leq b_n}|S_j-S_{[cn]}| >\epsilon\sqrt{cn}\right)\leq\frac{\sigma^2(S_{b_n}-S_{[cn]})}{\epsilon^2 cn}\leq\frac{\epsilon^3[cn]}{\epsilon^2cn}\leq\epsilon

对于 anj<[cn]a_n\leq j<[cn] 同理, 结合两式,

P(maxanjbnSjS[cn]>ϵcn)2ϵ\mathcal{P}\left(\max_{a_n\leq j\leq b_n}|S_j-S_{[cn]}|>\epsilon\sqrt{cn}\right)\leq 2\epsilon

从而当 nn0(ϵ)n\geq n_0(\epsilon) 时,

P(SνnS[cn][cn]>ϵ)=j=1P(νn=j;SνnS[cn][cn]>ϵ)anjbnP(νn=j;maxanjbnSjS[cn]>ϵ[cn])+j[an,bn]P(νn=j)P(maxanjbnSjS[cn]>ϵ[cn])+P(νn[an,bn])2ϵ+1P(Λ)3ϵ\begin{aligned} \mathcal{P}\left(\left|\frac{S_{\nu_n}-S_{[cn]}}{\sqrt{[cn]}}\right|>\epsilon\right) &=\sum_{j=1}^\infty\mathcal{P}\left(\nu_n=j;\left|\frac{S_{\nu_n}-S_{[cn]}}{\sqrt{[cn]}}\right|>\epsilon\right)\\ &\leq \sum_{a_n\leq j\leq b_n}\mathcal{P}\left(\nu_n=j;\max_{a_n\leq j\leq b_n}|S_j-S_{[cn]}|>\epsilon\sqrt{[cn]}\right)+\sum_{j\notin[a_n,b_n]}\mathcal{P}(\nu_n=j)\\ &\leq \mathcal{P}\left(\max_{a_n\leq j\leq b_n}|S_j-S_{[cn]}|>\epsilon\sqrt{[cn]}\right)+\mathcal{P}(\nu_n\notin[a_n,b_n])\\ &\leq 2\epsilon+1-\mathcal{P}(\Lambda)\leq 3\epsilon \end{aligned}

于是结论成立.

{ξn}\{\xi_n\} 独立, 满足 CLT, 证明 {ξn}\{\xi_n\} 满足大数定律的充要条件是

1n2k=1nD(ξk)0\frac{1}{n^2}\sum_{k=1}^nD(\xi_k)\to 0

证明\Leftarrow” 显然, 下证 “\Rightarrow” 成立.

考虑 kn=1n(SnESn)0k_n=\frac{1}{n}(S_n-ES_n)\to0, 而

ηn=SnESnD(Sn)dζN(0,1)ηn=1ηnd1ζ\eta_n=\frac{S_n-ES_n}{\sqrt{D(S_n)}}\xrightarrow{d}\zeta\sim N(0,1) \quad \Rightarrow \quad \eta_n'=\frac{1}{\eta_n}\xrightarrow{d}\frac{1}{\zeta}

从而 knηn=D(Sn)n0k_n\eta_n'=\frac{\sqrt{D(S_n)}}{n}\to 0, 1n2k=1nD(ξk)0\frac{1}{n^2}\sum_{k=1}^nD(\xi_k)\to0.

{ξn}\{\xi_n\} 为独立随机变量序列, 每个 ξn\xi_n 有分布 P(ξn=±nα)=12\mathcal{P}(\xi_n = \pm n^\alpha) = \frac{1}{2}. 试证:
(1) 当 α>12\alpha > -\frac{1}{2} 时, {ξn}\{\xi_n\} 满足 CLT;
(2) 当 α>0\alpha > 0 时, {ξn}\{\xi_n\} 服从大数定律的充要条件是 α<12\alpha < \frac{1}{2}.

证明
(1) 由题 Eξk=0E\xi_k = 0, D(ξk)=n2αD(\xi_k) = n^{2\alpha}, Bn2=k=1nk2αB_n^2 = \sum_{k=1}^n k^{2\alpha}, 由 2α>12\alpha > -1, 取 δ>0\delta > 0 s.t. α(2+δ)1\alpha(2+\delta) \neq -1, 于是

1Bn2+δk=1nEξk2+δ0nxα(2+δ)(0nx2αdx)1+δ2nδ20asn\frac{1}{B_n^{2+\delta}} \sum_{k=1}^n E|\xi_k|^{2+\delta} \sim \frac{\int_0^n x^{\alpha(2+\delta)}}{\left(\int_0^n x^{2\alpha}dx\right)^{1+\frac{\delta}{2}}} \sim n^{-\frac{\delta}{2}} \to 0 \quad as \quad n \to \infty

从而 {ξn}\{\xi_n\} 满足 Lyapunov 条件, 故满足 CLT.

(2) 由 (1), 此时 {ξn}\{\xi_n\} 为独立的满足 CLT 的随机变量列, {ξn}\{\xi_n\} 满足 SLLN 当且仅当

1n2D(Sn)=1n2k=1nk2αn2α10\frac{1}{n^2} D(S_n) = \frac{1}{n^2} \sum_{k=1}^n k^{2\alpha} \sim n^{2\alpha - 1} \to 0

此即 α<12\alpha < \frac{1}{2}.

{ξn}\{\xi_n\} 独立同分布, Eξn=0E\xi_n = 0, D(ξn)=1D(\xi_n) = 1. 试证如下随机变量列为渐近正态分布的:

ηn=nξ1++ξnξ12++ξn2,ζn=ξ1++ξnξ12++ξn2\eta_n = \sqrt{n} \frac{\xi_1 + \cdots + \xi_n}{\xi_1^2 + \cdots + \xi_n^2}, \zeta_n = \frac{\xi_1 + \cdots + \xi_n}{\sqrt{\xi_1^2 + \cdots + \xi_n^2}}

证明Sn=k=1nξkS_n = \sum_{k=1}^n \xi_k, Tn=k=1nξk2T_n = \sum_{k=1}^n \xi_k^2, 则 ESn=0ES_n = 0, D(Sn)=ETn=nD(S_n) = ET_n = n. 再由 {ξn}\{\xi_n\}, {ξn2}\{\xi_n^2\} 均独立同分布, 且 ξ1\xi_1 期望方差有限, ξ12\xi_1^2 期望有限, 故 {ξn}\{\xi_n\} 满足 CLT, {ξn2}\{\xi_n^2\} 满足 SLLN, 也满足 WLLN, 那么

SnndN(0,1),TnnP1nTnP1ηn=SnnnTndN(0,1)\frac{S_n}{\sqrt{n}} \xrightarrow{d} N(0,1), \quad \frac{T_n}{n} \xrightarrow{\mathcal{P}} 1 \Rightarrow \frac{n}{T_n} \xrightarrow{\mathcal{P}} 1 \Rightarrow \eta_n = \frac{S_n}{\sqrt{n}}\frac{n}{T_n} \xrightarrow{d} N(0,1)

SnndN(0,1),nTnP1ζn=SnnnTndN(0,1)\frac{S_n}{\sqrt{n}} \xrightarrow{d} N(0,1), \quad \sqrt{\frac{n}{T_n}} \xrightarrow{\mathcal{P}} 1 \Rightarrow \zeta_n = \frac{S_n}{\sqrt{n}} \sqrt{\frac{n}{T_n}} \xrightarrow{d} N(0,1)


概率论期末复习
http://imtdof.github.io/2025/05/27/概率论期末复习/
作者
UncleBob
发布于
2025年5月27日
许可协议